[1] |
VON KARMAN T. The impact on seaplane floats during landing: NACA-TN-321 [R]. National Advisory Committee for Aeronatics, 1929: 309-313.
|
[2] |
FOROUZANI H, SARANJAM B, KAMALI R. A study on the motion of high speed supercavitating projectiles [J]. Journal of Applied Fluid Mechanics, 2018, 11(6): 1727–1738. DOI: 10.29252/jafm.11.06.28807.
|
[3] |
ERFANIAN M R, ANBARSOOZ M, RAHIMI N, et al. Numerical and experimental investigation of a three dimensional spherical-nose projectile water entry problem [J]. Ocean Engineering, 2015, 104: 397–404. DOI: 10.1016/j.oceaneng.2015.05.024.
|
[4] |
AKBARI M A, MOHAMMADI J, FEREIDOONI J. Stability of oblique water entry of cylindrical projectiles [J]. Journal of Applied Fluid Mechanics, 2021, 14(1): 301–314. DOI: 10.47176/jafm.14.01.31682.
|
[5] |
AKBARI M A, MOHAMMADI J, FEREIDOONI J. A dynamic study of the high-speed oblique water entry of a stepped cylindrical-cone projectile [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(1): 2. DOI: 10.1007/s40430-020-02727-2.
|
[6] |
SHI H H, ITOH M, TAKAMI T. Optical observation of the supercavitation induced by high-speed water entry [J]. Journal of Fluids Engineering, 2000, 122(4): 806–810. DOI: 10.1115/1.1310575.
|
[7] |
高英杰, 孙铁志, 张桂勇, 等. 回转体高速倾斜入水的流场特性及结构响应 [J]. 爆炸与冲击, 2020, 40(12): 123301. DOI: 10.11883/bzycj-2020-0014.GAO Y J, SUN T Z, ZHANG G Y, et al. Flow characteristics and structure response of high-speed oblique water-entry for a revolution body [J]. Explosion and Shock Waves, 2020, 40(12): 123301. DOI: 10.11883/bzycj-2020-0014.
|
[8] |
LU L, WANG C, LI Q, et al. Numerical investigation of water-entry characteristics of high-speed parallel projectiles [J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13(5): 450–465. DOI: 10.1016/j.ijnaoe.2021.05.003.
|
[9] |
LU L, GAO C S, QI X B, et al. Numerical study on the water-entry characteristics of asynchronous parallel projectiles at an oblique impact angle [J]. Ocean Engineering, 2023, 271: 113697. DOI: 10.1016/j.oceaneng.2023.113697.
|
[10] |
BERGSMA J M, BOUHUYS C W, SCHAAP T, et al. On the measurement of submersion ice resistance of ships, using artificial ice [C]// Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference. Busan: ISOPE, 2014.
|
[11] |
ZONG Z, YANG B Y, SUN Z, et al. Experimental study of ship resistance in artificial ice floes [J]. Cold Regions Science and Technology, 2020, 176: 103102. DOI: 10.1016/j.coldregions.2020.103102.
|
[12] |
张军, 蔡晓伟, 宣建明, 等. 弹体穿越冰水混合物流动过程的数值模拟 [J]. 弹道学报, 2020, 32(3): 35–40. DOI: 10.12115/j.issn.1004-499X(2020)03-008.ZHANG J, CAI X W, XUAN J M, et al. Numerical simulation of flow filed of projectile passing through ice water mixture [J]. Journal of Ballistics, 2020, 32(3): 35–40. DOI: 10.12115/j.issn.1004-499X(2020)03-008.
|
[13] |
YOU C, SUN T Z, ZHANG G Y, et al. Numerical study on effect of brash ice on water exit dynamics of ventilated cavitation cylinder [J]. Ocean Engineering, 2022, 245: 110443. DOI: 10.1016/j.oceaneng.2021.110443.
|
[14] |
张健宇. 航行体冰孔约束出水空泡演化及载荷特性研究 [D]. 大连: 大连理工大学, 2021.ZHANG J Y. Study on cavity evolution and load characteristics of water exit of underwater vehicle constrained by ice environment [D]. Dalian: Dalian University of Technology, 2021.
|
[15] |
蔡晓伟, 宣建明, 王宝寿, 等. 细长体穿越冰-水混合物的出水流场数值模拟 [J]. 兵工学报, 2020, 41(S1): 79–90. DOI: 10.3969/j.issn.1000-1093.2020.S1.012.CAI X W, XUAN J M, WANG B S, et al. Numerical simulation of thin body passing through the ice-water mixture flow field [J]. Acta Armamentarii, 2020, 41(S1): 79–90. DOI: 10.3969/j.issn.1000-1093.2020.S1.012.
|
[16] |
WANG H, LUO Y C, CHEN Z H, et al. Influences of ice-water mixture on the vertical water-entry of a cylinder at a low velocity [J]. Ocean Engineering, 2022, 256: 111464. DOI: 10.1016/j.oceaneng.2022.111464.
|
[17] |
LOGVINOVICH G V. Hydrodynamics of free-boundary flows [R]. Jersualem: IPST Press, 1972.
|