冰孔约束条件下的弹丸倾斜入水实验研究

张东晓 鹿麟 闫雪璞 高词松 胡彦晓 陈凯敏

张东晓, 鹿麟, 闫雪璞, 高词松, 胡彦晓, 陈凯敏. 冰孔约束条件下的弹丸倾斜入水实验研究[J]. 爆炸与冲击, 2023, 43(10): 103304. doi: 10.11883/bzycj-2023-0143
引用本文: 张东晓, 鹿麟, 闫雪璞, 高词松, 胡彦晓, 陈凯敏. 冰孔约束条件下的弹丸倾斜入水实验研究[J]. 爆炸与冲击, 2023, 43(10): 103304. doi: 10.11883/bzycj-2023-0143
ZHANG Dongxiao, LU Lin, YAN Xuepu, GAO Cisong, HU Yanxiao, CHEN Kaimin. Experimental study on oblique water-entry of projectile constrained by ice hole[J]. Explosion And Shock Waves, 2023, 43(10): 103304. doi: 10.11883/bzycj-2023-0143
Citation: ZHANG Dongxiao, LU Lin, YAN Xuepu, GAO Cisong, HU Yanxiao, CHEN Kaimin. Experimental study on oblique water-entry of projectile constrained by ice hole[J]. Explosion And Shock Waves, 2023, 43(10): 103304. doi: 10.11883/bzycj-2023-0143

冰孔约束条件下的弹丸倾斜入水实验研究

doi: 10.11883/bzycj-2023-0143
基金项目: 国家自然科学基金(52201385);山西省自然科学基金(20210302123023) ;山西省回国留学人员科研资助项目(2020-106)
详细信息
    作者简介:

    张东晓(2000- ),男,硕士研究生,zhangdongxiao_nuc@163.com

    通讯作者:

    鹿 麟(1988- ),男,博士,副教授, lulin2016@nuc.edu.com

  • 中图分类号: O385;TJ012.3

Experimental study on oblique water-entry of projectile constrained by ice hole

  • 摘要: 基于高速摄影技术,开展了冰孔约束条件下的弹丸倾斜入水实验;通过对比分析无冰环境与冰孔约束条件下的弹丸入水运动过程,并将入水运动过程分为空泡扩张、空泡闭合以及空泡溃灭三个阶段进行了研究,得到了冰孔约束条件下弹丸入水的空泡演化特性;通过对比同一直径冰孔约束条件不同入水初速下弹丸的空泡演化过程及速度变化规律,总结得出了入水初速对于冰孔约束条件下弹丸空泡演化特性以及入水运动特性的影响规律。研究结果表明:空泡扩张阶段,冰孔约束条件下产生的喷溅较为分散,弹丸背水面产生部分隆起;此外,冰孔约束条件下的空泡扩张受到阻碍,空泡最大直径减小。空泡闭合阶段,冰孔约束条件下的空泡闭合时间提前,并且撞击冰板的反射流冲击空泡侧壁使空泡发生局部冲击溃灭。空泡溃灭阶段,冰孔约束条件下的溃灭尾迹由局部冲击溃灭、脱落溃灭和正常溃灭组成;空泡溃灭产生的尾迹旋涡较小。随着入水初速的提高,空泡的长度和最大直径明显增大,局部冲击溃灭的宽度增加;冰孔约束条件会使得弹丸在空泡扩张阶段的速度衰减幅度增大,空泡的闭合时间提前,开始溃灭的时刻延后。
  • 图  1  实验系统示意图

    Figure  1.  Schematic diagram of experimental system

    图  2  实验现场布置

    Figure  2.  Experimental site

    图  3  实验弹丸模型

    Figure  3.  Experimental projectile model

    图  4  实验工况示意图

    Figure  4.  Schematic diagram of experimental conditions

    图  5  空泡扩张阶段空泡演化照片

    Figure  5.  Photos of cavity evolution in water-entry cavity expansion stage

    图  6  空泡扩张阶段空泡细节图

    Figure  6.  Diagram of cavity detail in cavity expansion stage

    图  7  空泡扩张阶段(3.72 ms)仰视照片

    Figure  7.  Photos of cavity expansion stage (3.72 ms) from bottom view

    图  8  空泡闭合阶段空泡演化照片

    Figure  8.  Photos of cavity evolution in cavity contraction stage

    图  9  空泡闭合阶段仰视照片

    Figure  9.  Photos of cavity closure stage from bottom view

    图  10  空泡溃灭阶段空泡演化照片

    Figure  10.  Photo of cavity evolution in cavity collapse stage

    图  11  不同初速下弹丸的入水过程

    Figure  11.  Projectile water-entry processes at different initial velocities

    图  12  闭合以及溃灭时刻的空泡细节

    Figure  12.  Diagram of cavity detail at cavity closure and collapse moment

    图  13  不同入水初速下的空泡演化轮廓图

    Figure  13.  Cavity evolution contours at different initial velocities

    图  14  不同工况下的弹丸速度变化曲线

    Figure  14.  Projectile velocity attenuation under different working conditions

    图  15  不同工况下弹丸的加速度变化曲线

    Figure  15.  Projectile acceleration curves under different working conditions

    图  16  不同工况下弹丸的姿态角变化曲线

    Figure  16.  Projectile attitude angle curves under different working conditions

  • [1] VON KARMAN T. The impact on seaplane floats during landing: NACA-TN-321 [R]. National Advisory Committee for Aeronatics, 1929: 309-313.
    [2] FOROUZANI H, SARANJAM B, KAMALI R. A study on the motion of high speed supercavitating projectiles [J]. Journal of Applied Fluid Mechanics, 2018, 11(6): 1727–1738. DOI: 10.29252/jafm.11.06.28807.
    [3] ERFANIAN M R, ANBARSOOZ M, RAHIMI N, et al. Numerical and experimental investigation of a three dimensional spherical-nose projectile water entry problem [J]. Ocean Engineering, 2015, 104: 397–404. DOI: 10.1016/j.oceaneng.2015.05.024.
    [4] AKBARI M A, MOHAMMADI J, FEREIDOONI J. Stability of oblique water entry of cylindrical projectiles [J]. Journal of Applied Fluid Mechanics, 2021, 14(1): 301–314. DOI: 10.47176/jafm.14.01.31682.
    [5] AKBARI M A, MOHAMMADI J, FEREIDOONI J. A dynamic study of the high-speed oblique water entry of a stepped cylindrical-cone projectile [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(1): 2. DOI: 10.1007/s40430-020-02727-2.
    [6] SHI H H, ITOH M, TAKAMI T. Optical observation of the supercavitation induced by high-speed water entry [J]. Journal of Fluids Engineering, 2000, 122(4): 806–810. DOI: 10.1115/1.1310575.
    [7] 高英杰, 孙铁志, 张桂勇, 等. 回转体高速倾斜入水的流场特性及结构响应 [J]. 爆炸与冲击, 2020, 40(12): 123301. DOI: 10.11883/bzycj-2020-0014.

    GAO Y J, SUN T Z, ZHANG G Y, et al. Flow characteristics and structure response of high-speed oblique water-entry for a revolution body [J]. Explosion and Shock Waves, 2020, 40(12): 123301. DOI: 10.11883/bzycj-2020-0014.
    [8] LU L, WANG C, LI Q, et al. Numerical investigation of water-entry characteristics of high-speed parallel projectiles [J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13(5): 450–465. DOI: 10.1016/j.ijnaoe.2021.05.003.
    [9] LU L, GAO C S, QI X B, et al. Numerical study on the water-entry characteristics of asynchronous parallel projectiles at an oblique impact angle [J]. Ocean Engineering, 2023, 271: 113697. DOI: 10.1016/j.oceaneng.2023.113697.
    [10] BERGSMA J M, BOUHUYS C W, SCHAAP T, et al. On the measurement of submersion ice resistance of ships, using artificial ice [C]// Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference. Busan: ISOPE, 2014.
    [11] ZONG Z, YANG B Y, SUN Z, et al. Experimental study of ship resistance in artificial ice floes [J]. Cold Regions Science and Technology, 2020, 176: 103102. DOI: 10.1016/j.coldregions.2020.103102.
    [12] 张军, 蔡晓伟, 宣建明, 等. 弹体穿越冰水混合物流动过程的数值模拟 [J]. 弹道学报, 2020, 32(3): 35–40. DOI: 10.12115/j.issn.1004-499X(2020)03-008.

    ZHANG J, CAI X W, XUAN J M, et al. Numerical simulation of flow filed of projectile passing through ice water mixture [J]. Journal of Ballistics, 2020, 32(3): 35–40. DOI: 10.12115/j.issn.1004-499X(2020)03-008.
    [13] YOU C, SUN T Z, ZHANG G Y, et al. Numerical study on effect of brash ice on water exit dynamics of ventilated cavitation cylinder [J]. Ocean Engineering, 2022, 245: 110443. DOI: 10.1016/j.oceaneng.2021.110443.
    [14] 张健宇. 航行体冰孔约束出水空泡演化及载荷特性研究 [D]. 大连: 大连理工大学, 2021.

    ZHANG J Y. Study on cavity evolution and load characteristics of water exit of underwater vehicle constrained by ice environment [D]. Dalian: Dalian University of Technology, 2021.
    [15] 蔡晓伟, 宣建明, 王宝寿, 等. 细长体穿越冰-水混合物的出水流场数值模拟 [J]. 兵工学报, 2020, 41(S1): 79–90. DOI: 10.3969/j.issn.1000-1093.2020.S1.012.

    CAI X W, XUAN J M, WANG B S, et al. Numerical simulation of thin body passing through the ice-water mixture flow field [J]. Acta Armamentarii, 2020, 41(S1): 79–90. DOI: 10.3969/j.issn.1000-1093.2020.S1.012.
    [16] WANG H, LUO Y C, CHEN Z H, et al. Influences of ice-water mixture on the vertical water-entry of a cylinder at a low velocity [J]. Ocean Engineering, 2022, 256: 111464. DOI: 10.1016/j.oceaneng.2022.111464.
    [17] LOGVINOVICH G V. Hydrodynamics of free-boundary flows [R]. Jersualem: IPST Press, 1972.
  • 加载中
图(16)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  37
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-08-07
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回