Dynamic response of a metal target plate to simultaneous initiation of two charges
-
摘要: 采用量纲分析的方法,分析了两装药同时爆炸加载下金属薄板动态响应过程中的相关独立变量,并使用有限元软件进行数值计算,研究了两装药同时起爆情况下装药量、装药间距及炸距对45钢靶板响应特性的影响。基于数值模拟和量纲分析的结果,分别建立了相关参量与金属靶板最大变形挠度的函数关系,获得了适用于一定范围的靶板挠度计算模型。该研究能够在一定程度上实现不同分布装药的爆炸效应快速计算。Abstract: To study the response law of a metal target plate under the simultaneous initiation of two charges and to construct a calculation model for the deformation and deflection of the target plate under the action of dual explosion source shock waves, the dynamic response of the metal plate under the action of double explosion sources was studied through dimensional analysis. Based on the numerical simulation calculation results using the finite element software, the influence of the charge quality, charge spacing, and vertical distance from the charge to the target plate of the double explosion source on the maximum deflection of the 45 steel target plate was summarized. The results show that the maximum deflection of the target plate increases linearly with the charge mass, decreases linearly with the charge spacing and decreases exponentially with the vertical distance from the charge to the target plate. The functional relationship between different parameters and the maximum deformation deflection of the target plate was fitted. This study can to some extent achieve rapid calculation of the explosion effect of charges with different distributions.
-
Key words:
- simultaneous explosion /
- dimensional analysis /
- metal target plate /
- dynamic response
-
密度ρ/(g·cm−3) 杨氏模量E/GPa 泊松比υ A/MPa B/MPa N C 7.8 200 0.3 410 20 0.08 0.100 表 2 部分试验数据与仿真结果
Table 2. Partial test data and simulation results
序号 靶板厚度/mm TNT质量/g 炸距/cm 挠度/mm 挠度误差/% 试验 计算 1 1 700 98 79 71.132 10.0 2 1 708 80 102 91.946 9.9 3 1 1108 133 82 68.235 16.8 4 2 700 47 79 81.841 3.6 密度ρ/(g·cm3) 杨氏模量E/GPa 泊松比υ A/MPa B/MPa N C 7.8 200 0.3 507 320 0.28 0.064 表 4 不同药量下靶板的最大变形挠度
Table 4. The maximum deformation deflections of target plates under different charge amounts
序号 装药质量/kg 炸距/m 装药间距/m 靶板变形挠度/mm 装药1 装药2 1 1.0 1.0 2.0 1.5 9.815 2 1.5 1.5 13.561 3 2.0 2.0 17.016 4 2.5 2.5 20.36 5 3.0 3.0 23.61 6 5.0 5.0 35.852 表 5 炸距不同时靶板的最大变形挠度
Table 5. The maximum deformation deflections of target plates with different explosive distances
序号 装药质量/kg 炸距/m 装药间距/m 靶板变形挠度/mm 装药1 装药2 1 2.0 2.0 2.0 1.5 17.020 2 2.1 15.653 3 2.2 14.349 4 2.3 13.235 5 2.4 12.268 6 2.5 11.324 7 2.6 10.522 8 2.7 9.704 9 2.8 8.972 10 2.9 8.331 11 3.0 7.869 表 6 金属靶板的最大变形挠度计算结果
Table 6. Calculation results of the maximum deformation deflections of metal target plates
序号 装药质量/kg 炸距/m 两装药间距/cm 靶板变形挠度/mm 装药1 装药2 1 1.0 1.0 1.0 50 11.850 2 70 11.587 3 90 11.213 4 100 10.978 5 110 10.778 6 130 10.305 7 150 9.815 8 180 8.991 9 200 8.427 10 230 7.577 11 250 7.054 表 7 不同比例装药间距下靶板的变形挠度
Table 7. Deformation deflections of target plates under different proportional charge spacings
序号 装药质量/kg 装药间距/m 炸距/m Z1 Z2 靶板变形挠度/mm 装药1 装药2 1 2.0 2.0 0.5 2.0 7.88709 31.54834 20.664 2 0.7 11.04192 20.155 3 0.9 14.19675 19.519 4 1.1 17.35159 18.767 5 1.3 20.50642 17.923 6 1.5 23.66126 17.016 7 1.7 26.81609 15.933 8 1.9 29.97093 15.074 9 2.0 31.54834 14.624 表 8 不同比例炸距下靶板的变形挠度
Table 8. Deformation deflections of target plates at different proportional explosive distances
序号 装药质量/kg 装药间距/m 炸距/m Z1 Z2 靶板变形
挠度/mm装药1 装药2 1 2.0 2.0 1.5 2.0 23.66126 31.54834 17.02 2 2.1 33.12576 15.653 3 2.2 34.70318 14.349 4 2.3 36.28059 13.235 5 2.4 37.85801 12.268 6 2.5 39.43543 11.324 7 2.6 41.01285 10.522 8 2.7 42.59026 9.704 9 2.8 44.16768 8.972 10 2.9 45.16768 8.331 11 3.0 47.32251 7.869 表 9 数值模拟结果与模型计算结果的对比
Table 9. Comparison of numerical simulation results with model calculation results
序号 TNT质量/kg 装药间距/m 炸距/m Z1 Z2 靶板挠度/mm 误差/% 装药1 装药2 仿真计算 模型计算 1 2.0 2.0 1.0 2.5 15.74061 39.35152 12.396 11.717 5.5 2 3.0 3.0 1.5 2.8 20.62603 38.50193 12.724 11.485 9.7 3 4.0 4.0 2.0 3.0 24.98666 37.47999 12.967 11.592 10.6 5 5.0 5.0 2.5 3.3 28.99445 38.27267 11.928 10.713 10.2 6 6.0 6.0 3.0 3.5 32.74179 38.19875 11.352 10.446 8.0 -
[1] 李芝绒, 张玉磊, 袁建飞, 等. 内部爆炸薄圆板的变形及有效载荷 [J]. 爆炸与冲击, 2020, 40(11): 113101. DOI: 10.11883/bzycj-2020-0045.ZHANG Z R, ZHANG Y L, YUAN J F, et al. Deformation and payload of thin circular plates subjected to internal explosion [J]. Explosion and Shock Waves, 2020, 40(11): 113101. DOI: 10.11883/bzycj-2020-0045. [2] 韩璐, 袁建飞, 张玉磊, 等. 固支矩形钢板近距爆炸的毁伤特性 [J]. 火炸药学报, 2021, 44(2): 225–232. DOI: 10.14077/j.issn.1007-7812.202004023.HAN L, YUAN J F, ZHANG Y L, et al. Damage characteristics of fixed rectangular steel plate under close-in explosion [J]. Chinese Journal of Explosives and Propellants, 2021, 44(2): 225–232 DOI: 10.14077/j.issn.1007-7812.202004023. [3] NASIRI S, SADEGH-YAZDI M, MOUSAVI S M, et al. Repeated underwater explosive forming: experimental investigation and numerical modeling based on coupled Eulerian-Lagrangian approach [J]. Thin-Walled Structures, 2022, 172: 108860. DOI: 10.1016/j.tws.2021.108860. [4] AUNE V, VALSAMOS G, CASADEI F, et al. On the dynamic response of blast-loaded steel plates with and without pre-formed holes [J]. International Journal of Impact Engineering, 2017, 108: 27–46. DOI: 10.1016/j.ijimpeng.2017.04.001. [5] 王芳, 冯顺山, 俞为民. 爆炸冲击波作用下靶板的塑性大变形响应研究 [J]. 中国安全科学学报, 2003, 13(3): 58–61. DOI: 10.16265/j.cnki.issn1003-3033.2003.03.016.WANG F, FENG S S, YU W M. Study on large plastic deformation response of target plate under explosive blast wave [J]. China Safety Science Journal, 2003, 13(3): 58–61. DOI: 10.16265/j.cnki.issn1003-3033.2003.03.016. [6] 郑成, 孔祥韶, 吴卫国. 爆炸载荷下矩形板弹塑性动态响应研究 [J]. 中国造船, 2015, 56(3): 19–30. DOI: 10.3969/j.issn.1000-4882.2015.03.003.ZHENG C, KONG X S, WU W G. Elastic-plastic dynamic response of rectangular plates subjected to blast loads [J]. Shipbuilding of China, 2015, 56(3): 19–30. DOI: 10.3969/j.issn.1000-4882.2015.03.003. [7] ZHENG C, KONG X S, WU W G, et al. Experimental and numerical studies on the dynamic response of steel plates subjected to confined blast loading [J]. International Journal of Impact Engineering, 2018, 113:144–160. DOI: 10.1016/j.ijimpeng.2017.11.013. [8] BAKER W E. Approximate techniques for plastic deformation of structures under impulsive loading: III [J]. Shock and Vibration Digest, 1982, 14(11): 3–11. DOI: 10.1177/058310248201401103. [9] 陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下固支方板的变形及破坏模式 [J]. 爆炸与冲击, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08.CHEN C H, ZHU X, HOU H L, et al. Deformation and failure modes of clamped square plates under close-range air blast loads [J]. Explosion and Shock Waves, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08. [10] 闫永明, 尉文超, 何肖飞, 等. TNT空爆载荷下WELDOX 700E钢变形行为研究 [J]. 爆炸与冲击, 2020, 40(7): 073102. DOI: 10.11883/bzycj-2019-0430.YAN Y M, WEI W C, HE X F, et al. Deformation behavior of WELDOX 700E steel subjected to TNT air-blast loading [J]. Explosion and Shock Waves, 2020, 40(7): 073102. DOI: 10.11883/bzycj-2019-0430. [11] 冯海云, 胡宏伟, 肖川, 等. 两点阵列爆炸威力场分布及增益研究 [J]. 火炸药学报, 2020, 43(3): 345–350. DOI: 10.14077/j.is-sn.1007-7812.201911014.FENG H Y, HU H W, XIAO C, et al. Research on the blast power field distribution and gain of two-point array explosion [J]. Chinese Journal of Explosives and Propellants, 2020, 43(3): 345–350. DOI: 10.14077/j.is-sn.1007-7812.201911014. [12] REZASEFAT M, MOSTOFI T M, OZBAKKALOGLU T. Repeated localized impulsive loading on monolithic and multi-layered metallic plates [J]. Thin-Walled Structures, 2019, 144: 106332. DOI: 10.1016/j.tws.2019.106332. [13] 翟红波, 李芝绒, 苏健军, 等. 多点同步内爆炸下典型舱室的毁伤特性 [J]. 振动与冲击, 2018, 37(2): 169–174,181. DOI: 10.13465/j.cnki.jvs.2018.02.025.ZHAI H B, LI Z R, SU J J, et al. Damage characteristics of a typical cabin with multi-point simultaneous inner explosion [J]. Journal of Vibration and Shock, 2018, 37(2): 169–174,181. DOI: 10.13465/j.cnki.jvs.2018.02.025. [14] 陈新祥, 刘彦. 爆炸冲击载荷作用下靶板动态响应研究 [J]. 兵工学报, 2016, 37(S2): 149–153.CHEN X X, LIU Y. Research on dynamic response of target plate under blast impact loading [J]. Acta Armamentarii, 2016, 37(S2): 149–153. [15] 吴义田, 张庆明. 近距离爆炸下不同厚度靶板的动态响应分析 [J]. 北京理工大学学报, 2007, 27(7): 568–571. DOI: 10.3969/j.issn.1001-0645.2007.07.002.WU Y T, ZHANG Q M. Dynamic response of plates of varied thickness subjected to close range explosion [J]. Transactions of Beijing Institute of Technology, 2007, 27(7): 568–571. DOI: 10.3969/j.issn.1001-0645.2007.07.02. DOI: 10.3969/j.issn.1001-0645.2007.07.002. [16] 陈能翔, 钟巍, 王澍霏, 等. 远距离爆炸荷载作用下钢框架几何相似律研究 [J]. 爆炸与冲击, 2023, 43(1): 013101. DOI: 10.11883/bzycj-2021-0498.CHEN N X, ZHONG W, WANG S F, et al. Study on geometric similarity law of steel frame under a far-field explosion load [J]. Explosion and Shock Waves, 2023, 43(1): 013101. DOI: 10.11883/bzycj-2021-0498. [17] 陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting onto 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.