爆炸荷载作用下UHPC板的弯曲损伤评估

苏琼 程月华 吴昊

苏琼, 程月华, 吴昊. 爆炸荷载作用下UHPC板的弯曲损伤评估[J]. 爆炸与冲击, 2023, 43(12): 125103. doi: 10.11883/bzycj-2023-0160
引用本文: 苏琼, 程月华, 吴昊. 爆炸荷载作用下UHPC板的弯曲损伤评估[J]. 爆炸与冲击, 2023, 43(12): 125103. doi: 10.11883/bzycj-2023-0160
SU Qiong, CHENG Yuehua, WU Hao. Flexural damage assessment for UHPC panels under blast loadings[J]. Explosion And Shock Waves, 2023, 43(12): 125103. doi: 10.11883/bzycj-2023-0160
Citation: SU Qiong, CHENG Yuehua, WU Hao. Flexural damage assessment for UHPC panels under blast loadings[J]. Explosion And Shock Waves, 2023, 43(12): 125103. doi: 10.11883/bzycj-2023-0160

爆炸荷载作用下UHPC板的弯曲损伤评估

doi: 10.11883/bzycj-2023-0160
基金项目: 国家自然科学基金(52078379)
详细信息
    作者简介:

    苏 琼(1993- ),女,博士研究生,1810200@tongji.edu.cn

    通讯作者:

    程月华(1994- ),女,博士,yhcheng@tongji.edu.cn

  • 中图分类号: O389; TU375.2

Flexural damage assessment for UHPC panels under blast loadings

  • 摘要: 为构建爆炸荷载作用下超高性能混凝土(UHPC)板弯曲损伤等级评估的p-I(压力-冲量)曲线:采用条带法进行截面分析,建立了考虑UHPC材料拉/压软化和塑性铰影响的UHPC简支单向板的非线性抗力方程和等效单自由度(ESDOF)理论模型;通过与六炮次爆炸实验中UHPC板的挠度时程,以及UFC 3-340-02和FHWA规范推荐方法的计算结果对比,验证了本文理论模型的可靠性;基于验证的ESDOF模型,构建了评估UHPC板的不同弯曲损伤等级的p-I曲线并开展了参数影响分析,提出并验证了UHPC板弯曲损伤评估的p-I曲线经验公式。结果表明:提高混凝土强度等级和钢筋屈服强度、增加受拉钢筋配筋率和板厚,以及减小净跨均可提升UHPC板的抗爆性能。
  • 图  1  ESDOF模型及爆炸荷载简化

    Figure  1.  ESDOF model and the simplification of blast loadings

    图  2  双线性理想弹-塑性抗力方程

    Figure  2.  Bilinear ideal elastoplastic resistance function

    图  3  实际简支构件及其对应的理想半跨对称梁模型[18]

    Figure  3.  Actual simply supported member and the corresponding half-span symmetric beam model[18]

    图  4  条带法截面分析示意图[20]

    Figure  4.  Schematic diagram of cross-sectional analysis by strip method[20]

    图  5  UHPC和钢筋本构模型[21-23]

    Figure  5.  Constitutive models of UHPC and reinforcement[21-23]

    图  6  非线性抗力方程的建立及荷载-质量转换系数与挠度关系

    Figure  6.  Nonlinear resistance function and the relationship between KLM and deflection

    图  7  UHPC单轴拉伸应力-应变曲线

    Figure  7.  Uniaxial tensile stress-strain curve of UHPC

    图  8  UHPC板的预测挠度时程与实验/数值模拟结果对比

    Figure  8.  Comparisons of predicted deflection-time histories and experimental/simulated results of UHPC panels

    图  9  UHPC-D4的预测挠度时程与实验结果的对比

    Figure  9.  Comparisons of predicted and experimental deflection-time histories of UHPC-D4

    图  10  UHPC板的ESDOF模型预测挠度时程与实验结果对比

    Figure  10.  Comparisons of ESDOF model predicted deflection time histories and experimental results of UHPC panels

    图  11  基准板p-I曲线

    Figure  11.  p-I diagrams for control panel

    图  12  不同混凝土强度等级UHPC板的p-I曲线

    Figure  12.  p-I diagrams for UHPC panels with different concrete strength grades

    图  13  不同钢筋屈服强度UHPC板的p-I曲线

    Figure  13.  p-I diagrams for UHPC panels with different yield strengths of reinforcement

    图  14  不同纵筋配筋率UHPC板的p-I曲线

    Figure  14.  p-I diagrams for UHPC panels with different longitudinal reinforcement ratios

    图  15  不同厚度UHPC板的p-I曲线

    Figure  15.  p-I diagrams for UHPC panels with different thicknesses

    图  16  不同净跨UHPC板的p-I曲线

    Figure  16.  p-I diagrams for UHPC panels with different clear spans

    图  17  基于ESDOF模型分析生成的p-I曲线与经验公式预测结果对比

    Figure  17.  Comapriosns between p-I diagrams from ESDOF model ananlysis and empirical formulae

    表  1  简化爆炸荷载特征参数

    Table  1.   Characteristic parameters of simplified blast loadings

    实验 试件 爆炸类型 pe/MPa te/ms
    Su等[1] UHPC-1 近场爆炸 7.122 0.28
    UHPC-2 近场爆炸 12.59 0.20
    UHPC-3 近场爆炸 18.52 0.16
    Li等[2] UHPC-D4 近场爆炸 20.89 0.20
    Mao等[3] A 远场爆炸 1.16 3
    B 远场爆炸 2.488 1.9
    下载: 导出CSV

    表  2  UHPC板的尺寸、配筋及材料特性参数

    Table  2.   Dimensions, reinforcement and material properties parameters of UHPC panels

    实验L/mmb/mmh/mmρt/%ρc/%fc/MPaEc/GPavf /%
    Su等[1]200010001000.8640.86414848.62
    Li等[2]180010001000.6790.339128.951.52
    Mao等[3]340013001003.4017054.82
    实验ft/MPaft1/MPaε1εfracfy/MPaEs/GPaEt/GPaεsu
    Su等[1]8.334.230.0010.0114801841.420.15
    Li等[2]7.669.950.0050.0230020020.15
    Mao等[3]10100.0040.0150020020.15
    下载: 导出CSV

    表  3  ESDOF模型预测峰值挠度与实验/数值模拟结果对比

    Table  3.   Comparisons of ESDOF model predicted and experimental/simulated maximum deflections

    实验 试件 实验值/mm 模拟值/mm UFC 3-340-02 FHWA 本文
    预测值/mm 误差/% 预测值/mm 误差/% 预测值/mm 误差/%
    Su等[1] UHPC-1 27.86 27.44 27.73 −0.5 17.39 −37.6 26.42 −5.2
    UHPC-2 38.90 41.89 7.6 24.92 −35.9 37.25 −4.2
    UHPC-3 48.13 55.98 16.3 32.56 −32.3 47.67 −1.0
    Li等[2] UHPC-D4 72 123.99 72.2 49.95 −30.6 73.11 1.5
    Mao等[3] A 110 113.24 2.9 88.24 −19.8 111.44 1.3
    B 210 193.32 −7.9 145.24 −30.8 213.46 1.6
    下载: 导出CSV

    表  4  UHPC板弯曲损伤$p{\text{-}}I $曲线经验公式相关参数

    Table  4.   Parameters of the empirical formulae of flexural damage p-I diagrams for UHPC panels

    影响因素 参数 表达式
    θ=2° θ=5°
    基准板 pb0 106 127
    Ib0 1214 2228
    βb 1.634 1.642
    100≤fc/MPa≤250 $ {\eta _{{f_{\text{c}}}}} $ 0.717 + 0.325 (fc/150) − 0.042 (fc/150)2 0.251 + 1.065 (fc/150) − 0.319 (fc/150)2
    $ {\lambda _{{f_{\text{c}}}}} $ 0.839 + 0.187 (fc/150) − 0.025 (fc/150)2 0.614 + 0.550 (fc/150) − 0.167 (fc/150)2
    $ {\alpha _{{f_{\text{c}}}}} $ 0.951 + 0.065 (fc/150) − 0.013 (fc/150)2 0.993 + 0.002 (fc/150) + 0.005 (fc/150)2
    300≤fy/MPa≤600 $ {\eta _{{f_{\text{y}}}}} $ 0.293 + 1.061 (fy/500) − 0.354 (fy/500)2 0.191 + 1.106 (fy/500) − 0.295 (fy/500)2
    $ {\lambda _{{f_{\text{y}}}}} $ 0.635 + 0.571 (fy/500) − 0.206 (fy/500)2 0.534 + 0.700 (fy/500) − 0.233 (fy/500)2
    $ {\alpha _{{f_{\text{y}}}}} $ 1.034 − 0.081 (fy/500) + 0.047 (fy/500)2 0.999 − 0.017 (fy/500) + 0.017 (fy/500)2
    0.393A0/Acρt/%
    ≤1.728A0/Ac
    $ {\eta _{{\rho _{\text{t}}}}} $ 0.292 + 0.791 (ρtAc/0.864A0) − 0.087 (ρtAc/0.864A0)2 0.159 + 0.947 (ρtAc/0.864A0) − 0.123 (ρtAc/0.864A0)2
    $ {\lambda _{{\rho _{\text{t}}}}} $ 0.619 + 0.448 (ρtAc/0.864A0) − 0.071 (ρtAc/0.864A0)2 0.524 + 0.572 (ρtAc/0.864A0) − 0.107 (ρtAc/0.864A0)2
    $ {\alpha _{{\rho _{\text{t}}}}} $ 0.998 − 0.001 (ρtAc/0.864A0) + 0.005 (ρtAc/0.864A0)2 0.973 + 0.032 (ρtAc/0.864A0) − 0.005 (ρtAc/0.864A0)2
    100≤h/mm≤250 ηh −0.294 + 0.928 (h/100) + 0.377 (h/100)2 −0.603 + 1.536 (h/100) + 0.071 (h/100)2
    λh −0.452 + 1.353 (h/100) + 0.101 (h/100)2 −0.438 + 1.376 (h/100) + 0.062 (h/100)2
    αh 0.834 + 0.211 (h/100) − 0.045 (h/100)2 0.928 + 0.090 (h/100) − 0.018 (h/100)2
    1000≤L/mm≤4000 ηL 0.187 − 28.977 0.029L/2000 0.218 − 23.259 0.034L/2000
    λL 0.492 − 2.586 0.200L/2000 0.533 − 2.265 0.210L/2000
    αL 1.201 − 0.213 (L/2000) + 0.022 (L/2000)2 1.185 − 0.203 (L/2000) + 0.021 (L/2000)2
    下载: 导出CSV

    表  5  验证板的参数取值

    Table  5.   Parameter values for the validation panels

    板编号fc/MPafy/MPaρt/%h/mmL/mm
    11003000.3931004000
    22003000.8642003000
    31205501.0471502500
    下载: 导出CSV
  • [1] SU Q, WU H, SUN H S, et al. Experimental and numerical studies on dynamic behavior of reinforced UHPC panel under medium-range explosions [J]. International Journal of Impact Engineering, 2021, 148: 103761. DOI: 10.1016/j.ijimpeng.2020.103761.
    [2] LI J, WU C Q, HAO H. An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads [J]. Materials & Design, 2015, 82: 64–76. DOI: 10.1016/j.matdes.2015.05.045.
    [3] MAO L, BARNETT S, BEGG D, et al. Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading [J]. International Journal of Impact Engineering, 2014, 64: 91–100. DOI: 10.1016/j.ijimpeng.2013.10.003.
    [4] SCHLEYER G K, BARNETT S J, MILLARD S G, et al. UHPFRC panel testing [J]. The Structural Engineer, 2011, 89(23/24): 34–40.
    [5] LIN X S. Numerical simulation of blast responses of ultra-high performance fibre reinforced concrete panels with strain-rate effect [J]. Construction and Building Materials, 2018, 176: 371–382. DOI: 10.1016/j.conbuildmat.2018.05.066.
    [6] SU Q, WU H, FANG Q. Calibration of KCC model for UHPC under impact and blast loadings [J]. Cement and Concrete Composites, 2022, 127: 104401. DOI: 10.1016/j.cemconcomp.2021.104401.
    [7] US Department of Defense. Structures to resist the effects of accidental explosions, with change 2: UFC 3-340-02 [S]. Washington: US Department of Defense, 2008: 583-600.
    [8] SILVA P F, LU B G. Blast resistance capacity of reinforced concrete slabs [J]. Journal of Structural Engineering, 2009, 135(6): 708–716. DOI: 10.1061/(ASCE)ST.1943-541X.000001.
    [9] SILVA P F, LU B G. Improving the blast resistance capacity of RC slabs with innovative composite materials [J]. Composites Part B: Engineering, 2007, 38(5/6): 523–534. DOI: 10.1016/j.compositesb.2006.06.015.
    [10] JACQUES E. Blast retrofit of reinforced concrete walls and slabs [D]. Ottawa: University of Ottawa, 2011: 145–165.
    [11] MAAZOUN A, BELKASSEM B, REYMEN B, et al. Blast response of RC slabs with externally bonded reinforcement: experimental and analytical verification [J]. Composite Structures, 2018, 200: 246–257. DOI: 10.1016/j.compstruct.2018.05.102.
    [12] WANG W, ZHANG D, LU F Y, et al. Pressure-impulse diagram with multiple failure modes of one-way reinforced concrete slab under blast loading using SDOF method [J]. Journal of Central South University, 2013, 20(2): 510–519. DOI: 10.1007/s11771-013-1513-z.
    [13] LIAO Z, TANG D G, LI Z Z, et al. Study on explosion resistance performance experiment and damage assessment model of high-strength reinforcement concrete beams [J]. International Journal of Impact Engineering, 2019, 133: 103362. DOI: 10.1016/j.ijimpeng.2019.103362.
    [14] 陈柏锟. 超高韧性水泥基复合材料及活性粉末混凝土靶板抗爆研究 [D]. 杭州: 浙江大学, 2021: 116–168.

    CHEN B K. Research on ultra-high toughness cementitious composites and reactive powder concrete slabs under blast loading [D]. Hangzhou: Zhejiang University, 2021: 116–168.
    [15] HOU X M, CAO S J, RONG Q, et al. A P-I diagram approach for predicting failure modes of RPC one-way slabs subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 120: 171–184. DOI: 10.1016/j.ijimpeng.2018.06.006.
    [16] 潘建军, 陈万祥, 郭志昆, 等. 基于P-I曲线的火灾后钢管RPC柱抗爆损伤评估方法 [J]. 防护工程, 2018, 40(5): 16–26.

    PAN J J, CHEN W X, GUO Z K, et al. Evaluation of fire and blast-damaged RPC-FST column based on pressure-impulse diagram [J]. Protective Engineering, 2018, 40(5): 16–26.
    [17] AALETI S, PETERSEN B, SRITHARAN S. Design guide for precast UHPC waffle deck panel system, including connections: FHWA-HIF-13-032 [R]. Washington: Federal Highway Administration, 2013: 49–51.
    [18] JACQUES E, LLOYD A, IMBEAU P, et al. GFRP-retrofitted reinforced concrete columns subjected to simulated blast loading [J]. Journal of Structural Engineering, 2015, 141(11): 04015028. DOI: 10.1061/(ASCE)ST.1943-541X.0001251.
    [19] JACQUES E, SAATCIOGLU M. Uncoupled compression membrane analysis of reinforced-concrete members subject to extreme loads [J]. Journal of Structural Engineering, 2020, 146(9): 04020189. DOI: 10.1061/(ASCE)ST.1943-541X.0002736.
    [20] 彭琦, 吴昊, 方秦, 等. 长持时平面爆炸波作用下-RC-梁动力响应研究 [J]. 建筑结构学报, 2023, 44(3): 87–101. DOI: 10.14006/j.jzjgxb.2021.0751.

    PENG Q, WU H, FANG Q, et al. Dynamic responses of RC beams under long-duration near-planar blast waves [J]. Journal of Building Structures, 2023, 44(3): 87–101. DOI: 10.14006/j.jzjgxb.2021.0751.
    [21] NAEIMI N. Experimental compressive behavior and numerical modeling of unconfined and confined ultra-high performance concrete [D]. Nevada: University of Nevada, Reno, 2020: 68–76.
    [22] MELANÇON C. Effect of high-performance concrete and steel materials on the blast performance of reinforced concrete one-way slabs [D]. Ottawa: University of Ottawa, 2016: 147.
    [23] 邹慧辉, 李明, 段建, 等. 钢筋动态本构模型及模型参数研究 [J]. 兵器装备工程学报, 2022, 43(8): 193–202. DOI: 10.11809/bqzbgcxb2022.08.031.

    ZOU H H, LI M, DUAN J, et al. Research on dynamic constitutive model and model parameters of steel bars [J]. Journal of Ordnance Equipment Engineering, 2022, 43(8): 193–202. DOI: 10.11809/bqzbgcxb2022.08.031.
    [24] International Federation for Structural Concrete (FIB). Fib model code for concrete structures 2010 [S]. Berlin: Wilhelm Ernst & Sohn, 2013: 100. DOI: 10.1002/9783433604090.
    [25] JONES N. Structural impact[M]. Cambridge: Cambridge University Press, 1990: 348-349. DOI: https://doi.org/10.1017/CBO9780511624285
    [26] MA L L, WU H, FANG Q. A unified performance-based blast-resistant design approach for RC beams/columns [J]. International Journal of Impact Engineering, 2023, 173: 104459. DOI: 10.1016/j.ijimpeng.2022.104459.
    [27] REN G M, WU H, FANG Q, et al. Effects of steel fiber content and type on static mechanical properties of UHPCC [J]. Construction and Building Materials, 2018, 163: 826–839. DOI: 10.1016/j.conbuildmat.2017.12.184.
    [28] AFGC Groupe De Travail BFUP. Bétons fibrés à ultra-hautes performances, recommandations [R]. Paris: Association Francaise de Génie Civil, 2013: 193-194.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  71
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-11-04
  • 网络出版日期:  2023-11-08
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回