复杂边界条件下近场水下爆炸对固支方板的毁伤效应

邓硕 赖志超 秦健 孟祥尧 迟卉 黄瑞源

邓硕, 赖志超, 秦健, 孟祥尧, 迟卉, 黄瑞源. 复杂边界条件下近场水下爆炸对固支方板的毁伤效应[J]. 爆炸与冲击, 2023, 43(11): 112204. doi: 10.11883/bzycj-2023-0164
引用本文: 邓硕, 赖志超, 秦健, 孟祥尧, 迟卉, 黄瑞源. 复杂边界条件下近场水下爆炸对固支方板的毁伤效应[J]. 爆炸与冲击, 2023, 43(11): 112204. doi: 10.11883/bzycj-2023-0164
DENG Shuo, LAI Zhichao, QIN Jian, MENG Xiangyao, CHI Hui, HUANG Ruiyuan. Damage effects of clamped square plates by near-field underwater explosion with complex boundary conditions[J]. Explosion And Shock Waves, 2023, 43(11): 112204. doi: 10.11883/bzycj-2023-0164
Citation: DENG Shuo, LAI Zhichao, QIN Jian, MENG Xiangyao, CHI Hui, HUANG Ruiyuan. Damage effects of clamped square plates by near-field underwater explosion with complex boundary conditions[J]. Explosion And Shock Waves, 2023, 43(11): 112204. doi: 10.11883/bzycj-2023-0164

复杂边界条件下近场水下爆炸对固支方板的毁伤效应

doi: 10.11883/bzycj-2023-0164
基金项目: 国家自然科学基金(12172178)
详细信息
    作者简介:

    邓 硕(1999- ),男,硕士研究生,shuodeng1999@163.com

    通讯作者:

    黄瑞源(1984- ),男,博士,研究员,huangruiyuan1984@163.com

  • 中图分类号: O383.1

Damage effects of clamped square plates by near-field underwater explosion with complex boundary conditions

  • 摘要: 近场水下爆炸会产生复杂的载荷模式,而复杂的边界条件使结构在近场水下爆炸作用下的毁伤形态更加难以预测。因此,采用耦合的欧拉-拉格朗日算法探究了水下爆炸气泡在多边界耦合作用下(自由面、弹塑性板、泥沙边界)的演化过程及其对固支方板的毁伤效应。首先,开展了2.5 g TNT在不同尺寸(板边长为0.46、0.92和1.61倍最大气泡直径)固支方板底部10 cm起爆的水下爆炸试验,验证了有限元方法的准确性。然后,结合试验和有限元结果分析了不同边界条件下板的毁伤机理。最后,通过系列数值模拟发现:随着板尺寸和爆距的增大,气泡会出现溃散、下射流和上射流3种不同的演化方式;随着板尺寸的增大,爆距对板中心最终变形的影响减小;泥沙边界能减缓气泡收缩,使气泡从中部塌陷形成方向相反的对射流,降低固支方板的位移和应变,对于气泡提前溃散的工况,泥沙边界基本无影响。
  • 图  1  耦合欧拉-拉格朗日方法的求解过程

    Figure  1.  The solution procedure of the coupled Eulerian-Lagrangian method

    图  2  场地布置及试件设计

    Figure  2.  Site layout and specimen design

    图  3  有限元模型

    Figure  3.  Finite element models

    图  4  不同网格尺寸下距药包中心不同距离处的冲击波峰值压力对比

    Figure  4.  Comparison of peak shock wave pressures at different distances from the charge center under different element sizes

    图  5  TNT在20 cm×20 cm板底起爆引起的气泡演化

    Figure  5.  Evolution images of bubbles caused by the explosion of a TNT charge at the bottom of the 20 cm×20 cm plate

    图  6  TNT在40 cm×40 cm板底起爆引起的气泡演化

    Figure  6.  Evolution images of bubbles caused by explosion of the TNT charge at the bottom of the 40 cm×40 cm plate

    图  7  TNT在70 cm×70 cm板底起爆引起的气泡演化

    Figure  7.  Evolution images of bubbles caused by the explosion of a TNT charge at the bottom of the 70 cm×70 cm plate

    图  8  气泡半径-时程曲线

    Figure  8.  The time-history curve of equivalent bubble radius

    图  9  20 cm×20 cm板的毁伤模式

    Figure  9.  Damage mode of the 20 cm×20 cm plate

    图  10  40 cm×40 cm板的毁伤模式

    Figure  10.  Damage mode of the 40 cm×40 cm plate

    图  11  70 cm×70 cm板的毁伤模式

    Figure  11.  Damage mode of the 70 cm×70 cm plate

    图  12  参数示意图

    Figure  12.  Schematic diagram of parameters

    图  13  下射流的形成过程

    Figure  13.  The formation process of the downward jet

    图  14  水射流的不同形态

    Figure  14.  Different forms of water jets

    图  15  位移时程曲线

    Figure  15.  Displacement-time curves

    图  16  固支方板的最终毁伤特征曲线

    Figure  16.  Final damage characteristic curves of clamped square plates

    图  17  气泡的演化过程(μ=0.46, da=10 cm)

    Figure  17.  The evolution process of bubbles (μ=0.46, da=10 cm)

    图  18  气泡的演化过程(μ=1.38, da=1 cm)

    Figure  18.  The evolution process of bubbles (μ=1.38, da=1 cm)

    图  19  吃水深度对板动态响应的影响

    Figure  19.  Effects of draught depth on the dynamic responses of the plates

    图  20  泥沙边界对气泡演化的影响(μ=0.46)

    Figure  20.  Effects of sediment boundaries on bubble evolution (μ=0.46)

    图  21  泥沙边界对气泡演化的影响(μ=1.38)

    Figure  21.  Effects of sediment boundaries on bubble evolution (μ=1.38)

    图  22  泥沙边界对射流形成的影响

    Figure  22.  Effects of sediment boundaries on jet formation

    图  23  泥沙边界对板动态响应的影响

    Figure  23.  Effects of sediment boundaries on dynamic responses of plates

    表  1  试验工况

    Table  1.   Test conditions

    工况药包质量/g爆距/cmL/cml/cm厚度/mm
    12.51070602
    22.51040302
    32.51020102
    下载: 导出CSV

    表  2  数值模拟工况设置

    Table  2.   Numerical simulation condition settings

    工况 方板尺寸 μ 方板爆距/cm γ
    1 20 cm×20 cm 0.46 10 0.46
    2 15 0.69
    3 20 0.92
    4 25 1.15
    5 30 1.38
    6 40 cm×40 cm 0.92 10 0.46
    7 15 0.69
    8 20 0.92
    9 25 1.15
    10 30 1.38
    11 50 cm×50 cm 1.15 10 0.46
    12 15 0.69
    13 20 0.92
    14 25 1.15
    15 30 1.38
    16 60 cm×60 cm 1.38 10 0.46
    17 15 0.69
    18 20 0.92
    19 25 1.15
    20 30 1.38
    21 70 cm×70 cm 1.61 10 0.46
    22 15 0.69
    23 20 0.92
    24 25 1.15
    25 30 1.38
    下载: 导出CSV

    表  3  吃水深度工况设置

    Table  3.   Settings of draught depth

    工况 方板尺寸 μ da/cm
    1 20 cm×20 cm 0.46 0
    2 1
    3 3
    4 5
    5 10
    6 60 cm×60 cm 1.38 0
    7 1
    8 3
    9 5
    10 10
    下载: 导出CSV

    表  4  泥沙边界工况设置

    Table  4.   Sediment boundary condition settings

    工况 方板尺寸 μ 药包距泥沙边界距离/cm λ
    1 20 cm×20 cm 0.46 10 0.46
    2 20 0.92
    3 30 1.38
    4 40 1.84
    5 60 cm×60 cm 1.38 10 0.46
    6 20 0.92
    7 30 1.38
    8 40 1.84
    下载: 导出CSV
  • [1] 秦业志, 王莹, 王志凯, 等. 小当量柱型装药水下近场爆炸固支单层方形钢板毁伤特性研究 [J]. 振动与冲击, 2021, 40(7): 29–36. DOI: 10.13465/j.cnki.jvs.2021.07.004.

    QIN Y Z, WANG Y, WANG Z K, et al. Damage characteristics of fixed single-layer square steel plate under near-field underwater explosion of small equivalent column charge [J]. Journal of Vibration and Shock, 2021, 40(7): 29–36. DOI: 10.13465/j.cnki.jvs.2021.07.004.
    [2] 张弛, 刘凯, 李海涛, 等. 水下爆炸下典型舰船结构整体损伤模式表征方法及图谱研究 [J]. 爆炸与冲击, 2022, 42(6): 065101. DOI: 10.11883/bzycj-2021-0200.

    ZHANG C, LIU K, LI H T, et al. Study on the characterization method and mode map of overall damage of typical warship structures subjected to underwater explosions [J]. Explosion and Shock Waves, 2022, 42(6): 065101. DOI: 10.11883/bzycj-2021-0200.
    [3] LIU L T, YAO X L, ZHANG A M, et al. Research on the estimate formulas for underwater explosion bubble jet parameters [J]. Ocean Engineering, 2018, 164: 563–576. DOI: 10.1016/j.oceaneng.2018.06.070.
    [4] RAMAJEYATHILAGAM K, VENDHAN C P, RAO V B. Non-linear transient dynamic response of rectangular plates under shock loading [J]. International Journal of Impact Engineering, 2000, 24(10): 999–1015. DOI: 10.1016/S0734-743X(00)00018-X.
    [5] 代利辉, 吴成, 安丰江. 水下爆炸载荷下固支方板的动态毁伤模式 [J]. 兵工学报, 2020, 41(S2): 111–119. DOI: 10.3969/j.issn.1000-1093.2020.S2.015.

    DAI L H, WU C, AN F J. Dynamic damage mode of clamped square plates subjected to underwater explosive loading [J]. Acta Armamentarii, 2020, 41(S2): 111–119. DOI: 10.3969/j.issn.1000-1093.2020.S2.015.
    [6] 汪俊, 孟利平, 伍星星, 等. 水面浮体结构底部水下爆炸射流试验研究 [J]. 船舶力学, 2022, 26(9): 13. DOI: 10.3969/j.issn.1007-7294.2022.09.014.

    WANG J, MENG L P, WU X X, et al. Experimental investigation on water-jets resulting from bubble collapse of underwater explosion under surface floating structures [J]. Journal of Ship Mechanics, 2022, 26(9): 13. DOI: 10.3969/j.issn.1007-7294.2022.09.014.
    [7] LI H T, ZHENG X Y, ZHANG C, et al. Sagging damage characteristics of hull girder with trapezoidal cross-section subjected to near-field underwater explosion [J]. Defence Technology, 2021, 21: 1–13. DOI: 10.1016/j.dt.2021.10.004.
    [8] 赖志超, 邓硕, 秦健, 等. 不同类型炸药近场水下爆炸下固支方板动态响应研究 [J/OL]. 工程力学[2023-05-04]. http://kns.cnki.net/kcms/detail/11.2595.o3.20221226.1340.003.html.

    LAI Z C, DENG S, QIN J, et al. Study on dynamic response of clamped square plates under near-field underwater explosion with different explosives [J/OL]. Engineering Mechanics[2023-05-04]. http://kns.cnki.net/kcms/detail/11.2595.o3.20221226.1340.003.html.
    [9] GAN N, LIU L T, YAO X L, et al. Experimental and numerical investigation on the dynamic response of a simplified open floating slender structure subjected to underwater explosion bubble [J]. Ocean Engineering, 2021, 219: 108308. DOI: 10.1016/j.oceaneng.2020.108308.
    [10] ZHANG A M, YAO X L, LI J. The interaction of an underwater explosion bubble and an elastic-plastic structure [J]. Applied Ocean Research, 2008, 30(3): 159–171. DOI: 10.1016/j.apor.2008.11.003.
    [11] 王诗平, 孙士丽, 张阿漫, 等. 冲击波和气泡作用下舰船结构动态响应的数值模拟 [J]. 爆炸与冲击, 2011, 31(4): 367–372. DOI: 10.11883/1001-1455(2011)04-0367-06.

    WANG S P, SUN S L, ZHANG A M, et al. Numerical simulation of dynamic response of warship structures subjected to underwater explosion shock waves and bubbles [J]. Explosion and Shock Waves, 2011, 31(4): 367–372. DOI: 10.11883/1001-1455(2011)04-0367-06.
    [12] 文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.

    WEN Y B, HU L L, Q J, et al. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion [J]. Explosion and Shock Waves, 2022, 42(5): 053203. DOI: 10.11883/bzycj-2021-0206.
    [13] 王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究 [J]. 物理学报, 2014, 63(19): 194703. DOI: 10.7498/aps.63.194703.

    WANG S S, LI M, MA F. Dynamics of the interaction between explosion bubble and free surface [J]. Acta Physica Sinica, 2014, 63(19): 194703. DOI: 10.7498/aps.63.194703.
    [14] LIU N N, CUI P, REN S F, et al. Study on the interactions between two identical oscillation bubbles and a free surface in a tank [J]. Physics of Fluids, 2017, 29(5): 052104. DOI: 10.1063/1.4984080.
    [15] HUNG C F, HWANGFU J J. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries [J]. Journal of Fluid Mechanics, 2010, 651: 55–80. DOI: 10.1017/S0022112009993776.
    [16] ZHANG A M, YAO X L, FENG L H. The dynamic behavior of a gas bubble near a wall [J]. Ocean Engineering, 2009, 36(3/4): 295–305. DOI: 10.1016/j.oceaneng.2008.12.006.
    [17] 张之凡, 谢宇杰, 王成, 等. 近自由面水下爆炸气泡与破损结构耦合作用机理研究 [J]. 北京理工大学学报, 2022, 42(9): 909–917. DOI: 10.15918/j.tbit1001-0645.2022.103.

    ZHANG Z F, XIE Y J, WANG C, et al. Coupling mechanism between damaged structure and underwater explosion bubble near free surface [J]. Transactions of Beijing institute of Technology, 2022, 42(9): 909–917. DOI: 10.15918/j.tbit1001-0645.2022.103.
    [18] 贺铭, 张阿漫, 刘云龙. 近场水下爆炸气泡与双层破口结构的相互作用 [J]. 爆炸与冲击, 2020, 40(11): 111402. DOI: 10.11883/bzycj-2020-0110.

    HE M, ZHANG A M, LIU Y L. Interaction of the underwater explosion bubbles and nearby double-layer structures with circular holes [J]. Explosion and Shock Waves, 2020, 40(11): 111402. DOI: 10.11883/bzycj-2020-0110.
    [19] 金辉, 张庆明, 高春生, 等. 不同边界条件水下爆炸气泡脉动对比的试验研究 [J]. 兵工学报, 2009, 30(S2): 213–217. DOI: CNKI:SUN:BIGO.0.2009-S2-045.

    JIN H, ZHANG Q M, GAO C S, et al. Comparison experimental study of underwater explosion bubble pulse among the different boundaries [J]. Acta Armamentarii, 2009, 30(S2): 213–217. DOI: CNKI:SUN:BIGO.0.2009-S2-045.
    [20] 金辉, 李兵, 权琳, 等. 不同边界条件下炸药水中爆炸的能量输出结构 [J]. 爆炸与冲击, 2013, 33(3): 325–330. DOI: 10.11883/1001-1455(2013)03-0325-05.

    JIN H, LI B, QUAN L, et al. Configuration of explosive energy output in different underwater boundary conditions [J]. Explosion and Shock Waves, 2013, 33(3): 325–330. DOI: 10.11883/1001-1455(2013)03-0325-05.
    [21] LINDAU O, LAUTERBORN W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall [J]. Journal of Fluid Mechanics, 2003, 479: 327–348. DOI: 10.1017/S0022112002003695.
    [22] JAYAPRAKASH A, HSIAO C, CHAHINE G. Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall [J]. Massachusetts Institute of Technology, 2012, 134(3): 381–382. DOI: 10.1115/1.4005688.
    [23] MA X, HUANG B, ZHAO X, ET AL. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries [J]. Ultrasonics Sonochemistry, 2018, 43: 80–90. DOI: 10.1016/j.ultsonch.2018.01.005.
    [24] ZHANG A M, CUI P, WANG Y. Experiments on bubble dynamics between a free surface and a rigid wall [J]. Experiments in Fluids, 2013, 54: 1602. DOI: 10.1007/s00348-013-1602-7.
    [25] HUANG G H, ZHANG M D, MA X J, et al. Dynamic behavior of a single bubble between the free surface and rigid wall [J]. Ultrasonics Sonochemistry, 2020, 67: 105147. DOI: 10.1016/j.ultsonch.2020.105147.
    [26] 陈志鹏. 气泡与复杂边界耦合机理研究[D]. 江苏镇江: 江苏科技大学, 2019.

    CHEN Z P. A study on the coupling effect of interaction between bubbles and complex boundaries [D]. Zhenjiang, Jiangsu, China: Jiangsu University of Science and Technology, 2019.
    [27] TIAN Z L, LIU Y L, ZHANG A M, et al. Jet development and impact load of underwater explosion bubble on solid wall [J]. Applied Ocean Research, 2020, 95: 102013. DOI: 10.1016/j.apor.2019.102013.
    [28] 张桂夫, 朱雨建, 杨基明. 水下爆炸冲击凹陷液面诱导射流研究 [J]. 爆炸与冲击, 2018, 38(2): 241–249. DOI: 10.11883/bzycj-2016-0238.

    ZHANG G F, ZHU Y J, YANG J M. A study on jet flow induced by underwater explosion at a pit-interface [J]. Explosion and Shock Waves, 2018, 38(2): 241–249. DOI: 10.11883/bzycj-2016-0238.
    [29] XU L Y, WANG S P, LIU Y L, et al. Numerical simulation on the whole process of an underwater explosion between a deformable seabed and a free surface [J]. Ocean Engineering, 2020, 219: 108311. DOI: 10.1016/j.oceaneng.2020.108311.
    [30] LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives [R]//Office of Scientific and Technical Information Technical Reports, 1973. DOI: 10.2172/4479737.
    [31] 李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究 [J]. 工程力学, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.

    LI X J, ZHANG C J, WANG X H, et al. Numerical study on the effect of equations of state of water on underwater explosions [J]. Engineering Mechanics, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.
    [32] YANG X Q, YANG H, GARDNER L, et al. A continuous dynamic constitutive model for normal-and high-strength structural steels [J]. Journal of Constructional Steel Research, 2022, 192: 107254. DOI: 10.1016/j.jcsr.2022.107254.
    [33] 孙远翔, 田俊宏, 张之凡, 等. 含铝炸药近场水下爆炸冲击波的实验及数值模拟 [J]. 振动与冲击, 2020, 39(14): 171–178, 193. DOI: 10.13465/j.cnki.jvs.2020.14.025.

    SUN Y X, TIAN J H, ZHANG Z F, et al. Experiment and numerical simulation study on the near-field underwater explosion of aluminized explosive [J]. Journal of Vibration and Shock, 2020, 39(14): 171–178, 193. DOI: 10.13465/j.cnki.jvs.2020.14.025.
    [34] COLE R H. Underwater explosion [M]. New Jersey: Princeton University Press, 1948.
    [35] HU J, CHEN Z Y, ZHANG X D, et al. Underwater explosion in centrifuge. part I: validation and calibration of scaling laws [J]. Science China Technological Sciences, 2017, 60(11): 1638–1657. DOI: 10.1007/s11431-017-9083-0.
  • 加载中
图(23) / 表(4)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  56
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-09-12
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回