Application of plastic-damage material model for foam concrete in composite protective structure
-
摘要: 为了将新型泡沫混凝土动态弹塑性损伤模型应用到防护结构中,首先开展组合式防护结构预制孔装药爆炸试验;随后利用新泡沫混凝土材料模型对试验进行数值模拟验证,并将新模型的模拟结果与LS-DYNA中Soil and Foam模型的模拟结果进行对比;最后,基于验证的数值模型,开展以梯度泡沫混凝土作为分配层的组合式防护结构预制孔装药爆炸的数值模拟,探讨梯度泡沫混凝土层界面层数和排列方式对组合式防护结构抗爆性能的影响。结果表明,新泡沫混凝土材料模型的模拟结果与试验结果吻合良好,与Soil and Foam模型相比,新模型在应力波传播和损伤破坏方面预测更好,泡沫混凝土层界面层数和排列方式对作用在主体结构上的应力以及分配层的损伤破坏情况有一定的影响。Abstract: An appropriate material model can accurately predict the mechanical behavior and damage mode of foam concrete subjected to blast loadings, and it has great significance on the design of composite protective structure. The purpose of this paper is to apply the new dynamic plastic-damage model for foam concrete presented by author to protective structures. Firstly, the new foam concrete model was briefly introduced. The model includes the definition of plasticity by introducing a yield function, flow rule and hardening law, the introduction of strain-rate effect and the definition of damage using plastic strain or related quantities. Subsequently, in order to validate the new model, the blast tests on the composite protective structure sandwiched by foam concrete with different strength were conducted and the stress waves at specific location and damage in foam concrete were recorded. Furthermore, the numerical results predicted by the new foam concrete model were compared to those predicted by the Soil and Foam model in the LS-DYNA. Finally, blast response of composite protective structure sandwiched by gradient foam concrete was numerically investigated based on the validated numerical model. The influences of arrangement and layers in gradient foam concrete layer on the anti-blast capability of composite protective structure were discussed by various working conditions. The results indicate that the numerical predictions excellently agreed with corresponding test data, demonstrating the accuracy of material model for foam concrete under blast loadings. Compared with the Soil and Foam model, the new model predicted better in terms of amplitude and duration of load on the structural layer, as well as the damage and failure in foam concrete layer. The gradient foam concrete numerical result showed that the arrangement and layers of foam concrete with different strength had an effect on the stress duration acting on the structure layer and the damage of the distribution layer. The new dynamic plastic-damage model for foam concrete has a broad application prospect in the research of protective structures
-
表 1 C5泡沫混凝土材料模型参数
Table 1. Parameters of C5 foam concrete material model
参数 取值 参数 取值 抗压强度fc 5 MPa 帽盖面参数$R$ 6 抗拉强度$T$ 0.5 MPa 硬化法则参数n 1000 弹性模量$E$ 203.9 MPa 流动法则参数$\omega $ 0.5 泊松比$\nu $ 0.15 损伤参数${\zeta _1}$ 0.001 基体密度$ {\rho _{\text{g}}} $ 1400 kg/m3 损伤参数${\zeta _2}$ 3.0 断裂面参数${a_1}$ 1.47 损伤参数${\zeta _3}$ 10-5 断裂面参数${a_2}$ 0.058/ fc 损伤参数${\zeta _4}$ 1.5 帽盖面参数${k_0}$ 3.2 MPa 损伤参数$\alpha $ 0.4 帽盖面参数${X_0}$ 15 MPa 损伤参数$\chi $ 1 表 2 C10泡沫混凝土材料模型参数
Table 2. Parameters of C10 foam concrete material model
参数 取值 参数 取值 抗压强度fc 10 MPa 帽盖面参数$R$ 6 抗拉强度$T$ 1.0 MPa 硬化法则参数n 1000 弹性模量$E$ 308.4 MPa 流动法则参数$\omega $ 0.5 泊松比$\nu $ 0.15 损伤参数${\zeta _1}$ 0.001 基体密度$ {\rho _{\text{g}}} $ 1400 kg/m3 损伤参数${\zeta _2}$ 3.0 断裂面参数${a_1}$ 1.47 损伤参数${\zeta _3}$ 10-5 断裂面参数${a_2}$ 0.058/ fc 损伤参数${\zeta _4}$ 1.5 帽盖面参数${k_0}$ 7 MPa 损伤参数$\alpha $ 0.4 帽盖面参数${X_0}$ 30 MPa 损伤参数$\chi $ 1 表 3 数值计算工况
Table 3. Working conditions for numerical simulation
工况 层数 防护结构 1 1 CF120+C5+C40 2 1 CF120+C10+C40 3 2 CF120+C5+C10+C40 4 2 CF120+C10+C5+C40 5 3 CF120+C3+C5+C10+C40 6 3 CF120+C3+C10+C5+C40 7 3 CF120+C5+C3+C10+C40 8 3 CF120+C10+C5+C3+C40 -
[1] 周辉, 任辉启, 吴祥云, 等. 成层式防护结构中分散层研究综述 [J]. 爆炸与冲击, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280.ZHOU H, REN H Q, WU X Y, et al. A review of sacrificial claddings in multilayer protective structure [J]. Explosion and Shock Waves, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280. [2] SHEN J, REN X J. Experimental investigation on transmission of stress waves in sandwich samples made of foam concrete [J]. Defence Technology, 2013, 9(2): 110–114. DOI: 10.1016/j.dt.2013.06.002. [3] FENG S W, ZHOU Y, LI Q M. Damage behavior and energy absorption characteristics of foamed concrete under dynamic load [J]. Construction and Building Materials, 2015, 101: 990–1005. DOI: 10.1016/j.conbuildmat.2022.129340. [4] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007.ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei, Anhui, China: University of Science and Technology of China, 2007. [5] 杨亚, 孔祥振, 方秦, 等. 爆炸荷载下泡沫混凝土分配层最小厚度的计算方法 [J]. 爆炸与冲击, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.YANG Y, KONG X Z, FANG Q, et al. Calculation method for minimum thickness of foam concrete distribution layer under blast load [J]. Explosion and Shock Waves, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047. [6] 王代华, 刘殿书, 杜玉兰, 等. 含泡沫吸能层防护结构爆炸能量分布的数值模拟研究 [J]. 爆炸与冲击, 2006, 26(6): 562–567. DOI: 10.11883/1001-1455(2006)06-0562-06.WANG D H, LIU D S, DU Y L, et al. Numerical simulation of anti-blasting mechanism and energy distribution of composite protective structure with foam concrete [J]. Explosion and Shock Waves, 2006, 26(6): 562–567. DOI: 10.11883/1001-1455(2006)06-0562-06. [7] HALLQUIST J. LS-DYNA keyword user’s manual, version: 970 [M]. Livermore, USA: Livermore Software Technology Corporation, 2003: 179–182. [8] 张景飞, 冯明德, 陈金刚. 泡沫混凝土抗爆性能的试验研究 [J]. 混凝土, 2010, 10: 10–12. DOI: 10.3969/j.issn.1002-3550.2010.10.004.ZHANG J F, FENG M D, CHEN J G. Study on the knock characteristic of foam concrete [J]. Concrete, 2010, 10: 10–12. DOI: 10.3969/j.issn.1002-3550.2010.10.004. [9] 高全臣, 刘殿书, 王代华, 等. 泡沫混凝土复合防护结构的抗爆性能试验研究 [C]//第六届全国工程结构安全防护学术会议论文集. 北京: 中国力学学会, 2007: 120–123.GAO Q C, LIU D S, WANG D H, et al. Experimental study on anti-knock performance of foam concrete composite protective structure [C]//Proceedings of the 6th National Academic Conference on Safety Protection of Engineering Structures. Beijing, China: Chinese Society of Theoretical and Applied Mechanics, 2007: 120–123. [10] 杜玉兰, 王代华, 刘殿书, 等. 含泡沫混凝土层复合结构抗爆性能试验研究 [C]//首届全国水工抗震防灾学术会议论文集. 北京: 中国水力发电工程学会, 2006: 85–89.DU Y L, WANG D H, LIU D S, et al. Experimental research on the characteristics of anti-blast compound structures including foam concrete [C]//Proceedings of the First National Academic Conference on Earthquake Resistance and Disaster Prevention of Hydraulic Engineering. Beijing: China Society for Hydropower Engineering, 2006: 85–89. [11] GUO H, GUO W, SHI Y. Computational modeling of the mechanical response of lightweight foamed concrete over a wide range of temperatures and strain rates [J]. Construction and Building Materials, 2015, 96: 622–631. DOI: 10.1016/j.conbuildmat.2015.08.064. [12] SU B Y, ZHOU Z W, LI Z Q, et al. Experimental investigation on the mechanical behavior of foamed concrete under uniaxial and triaxial loading [J]. Construction and Building Materials, 2019, 209(6): 41–51. DOI: 10.1016/j.conbuildmat.2019.03.097. [13] HARDY R D, LEE M Y, BRONOWSKI D R. Laboratory constitutive characterization of cellular concrete: SAND2004-1030 [R]. Albuquerque, USA: Sandia National Laboratories, 2004. DOI: 10.2172/918757. [14] LIU C Y, HOU J, HAO Y F, et al. Effect of high strain rate and confinement on the compressive properties of autoclaved aerated concrete [J]. International Journal of Impact Engineering, 2021, 156: 103943. DOI: 10.1016/-j.ijimpeng.2021.103943. [15] 赵凯, 王肖钧, 刘飞, 等. 多孔材料中应力波的传播 [J]. 爆炸与冲击, 2011, 31(1): 107–112. DOI: 10.11883/1001-1455(2011)01-0107-06.ZHAO K, WANG X J, LIU F, et al. Propagation of stress wave in porous material [J]. Explosion and Shock Waves, 2011, 31(1): 107–112. DOI: 10.11883/1001-1455(2011)01-0107-06. [16] TAN X J, CHEN W Z, LIU H Y. Stress-strain characteristics of foamed concrete subjected to large deformation under uniaxial and triaxial compressive loading [J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018095.1–04018095.10. DOI: 10.1061/(ASCE)MT.1943-5533.0002311. [17] SHI S F, KONG X Z, FANG Q. A plastic-damage material model for foam concrete under blast loads [J]. International Journal of Impact Engineering, 2023, 177: 104596. DOI: 10.1016/j.ijimpeng.2023.104596. [18] KONG X, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006. [19] HUANG X P, KONG X Z, CHEN Z Y, et al. A plastic-damage model for rock-like materials focused on damage mechanisms under high pressure [J]. Computers and Geotechnics, 2021, 137: 104263. DOI: 10.1016/j.compg-eo.2021.104263. [20] FOSSUM A F, BRANNON R M. On a viscoplastic model for rocks with mechanism-dependent characteristic times [J]. Acta Geotechnica, 2006, 1(2): 89–106. DOI: 10.1007/s11440-006-0010-z. [21] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016. [22] 袁璞, 马芹永, 张海东. 轻质泡沫混凝土SHPB试验与分析 [J]. 振动与冲击, 2014, 33(17): 116–119. DOI: 10.13465/j.cnki.Jvs.2014.17.021.YUAN P, MA Q Y, ZHANG H D. SHPB tests for light weight foam concrete [J]. Journal of Vibration and Shock, 2014, 33(17): 116–119. DOI: 10.13465/j.cnki.Jvs.2014.17.021. [23] 韩李斌, 杨黎明. 泡沫混凝土动态力学性能及破坏形式 [J]. 宁波大学学报(理工版), 2017, 30(1): 68–72. DOI: 1001-5132(2017)01-0068-05.HAN L B, YANG L M. Dynamic properties and failure types of foamed concrete [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2017, 30(1): 68–72. DOI: 1001-5132(2017)01-0068-05. [24] 黄海健, 宫能平, 穆朝民, 等. 泡沫混凝土动态力学性能及本构关系 [J]. 建筑材料学报, 2020, 23(2): 466–472. DOI: 10.3969/j.issn.1007-9629.2020.03.033.HUANG H J, GONG N P, MU C M, et al. Dynamic mechanical properties and constitutive relation of foam concrete [J]. Journal of Building Materials, 2020, 23(2): 466–472. DOI: 10.3969/j.issn.1007-9629.2020.03.033. [25] CUI J, HAO H, SHI Y C, et al. Experimental study of concrete damage under high hydrostatic pressure [J]. Cement and Concrete Research, 2017, 100: 140–152. DOI: 10.1177/2041419616633323. [26] WANG Y, KONG X Z, FANG Q. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815. [27] GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174(4): 104491. DOI: 10.1016/j.ijimpeng.2023.104491. [28] ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 122(10): 265–275. DOI: 10.1016/j.ijimpeng.2018.08.016. [29] ZHANG J H, CHEN L, WU H, et al. Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading [J]. Composite Structures, 2020, 241(6): 110859. DOI: 10.1016/j.compstruct.2019.04.031. [30] ZHANG J H, ZHANG Y D, FAN J Y, et al. Mesoscopic investigation of layered graded metallic foams under dynamic compaction [J]. Advances in Structural Engineering, 2018, 21(14): 2081–2098. DOI: 10.1177/1369433218766941.