Application of plastic-damage material model for foam concrete in composite protective structure
-
摘要: 为了将新型泡沫混凝土动态弹塑性损伤模型应用到防护结构中,首先开展组合式防护结构预制孔装药爆炸试验;随后利用新泡沫混凝土材料模型对试验进行数值模拟验证,并将新模型的模拟结果与LS-DYNA中Soil and Foam模型的模拟结果进行对比;最后,基于验证的数值模型,开展以梯度泡沫混凝土作为分配层的组合式防护结构预制孔装药爆炸的数值模拟,探讨梯度泡沫混凝土层界面层数和排列方式对组合式防护结构抗爆性能的影响。结果表明,新泡沫混凝土材料模型的模拟结果与试验结果吻合良好,与Soil and Foam模型相比,新模型在应力波传播和损伤破坏方面预测更好,泡沫混凝土层界面层数和排列方式对作用在主体结构上的应力以及分配层的损伤破坏情况有一定的影响。Abstract: An appropriate material model can accurately predict the mechanical behavior and damage mode of foam concrete subjected to blast loadings, and it has great significance on the design of composite protective structure. The purpose of this paper is to apply the new dynamic plastic-damage model for foam concrete presented by author to protective structures. Firstly, the new foam concrete model was briefly introduced. The model includes the definition of plasticity by introducing a yield function, flow rule and hardening law, the introduction of strain-rate effect and the definition of damage using plastic strain or related quantities. Subsequently, in order to validate the new model, the blast tests on the composite protective structure sandwiched by foam concrete with different strength were conducted and the stress waves at specific location and damage in foam concrete were recorded. Furthermore, the numerical results predicted by the new foam concrete model were compared to those predicted by the Soil and Foam model in the LS-DYNA. Finally, blast response of composite protective structure sandwiched by gradient foam concrete was numerically investigated based on the validated numerical model. The influences of arrangement and layers in gradient foam concrete layer on the anti-blast capability of composite protective structure were discussed by various working conditions. The results indicate that the numerical predictions excellently agreed with corresponding test data, demonstrating the accuracy of material model for foam concrete under blast loadings. Compared with the Soil and Foam model, the new model predicted better in terms of amplitude and duration of load on the structural layer, as well as the damage and failure in foam concrete layer. The gradient foam concrete numerical result showed that the arrangement and layers of foam concrete with different strength had an effect on the stress duration acting on the structure layer and the damage of the distribution layer. The new dynamic plastic-damage model for foam concrete has a broad application prospect in the research of protective structures
-
冲击波作为爆破战斗部的主要毁伤方式之一,是评估武器毁伤威力的一项重要指标[1]。毁伤威力评估时,需要对战斗部炸点周围的冲击波场进行分布式测量,同时要求多测点实现同步触发。实战环境下战斗部落点及起爆时刻具有一定的随机性,且战斗部爆炸前具有一定的速度,战斗部的运动速度会改变爆炸冲击波的压力场分布。传统的触发方法如断线触发[2]、光触发[3]、无线触发[1]等均难以实现战斗部实战环境下冲击波超压的可靠触发,因此对战斗部动爆压力场的特性分析主要是通过仿真计算,并结合少量试验数据结果和爆炸相似律获得经验公式[4-6],缺少实战环境下的试验研究。
本文中,提出了一种基于地震波可靠触发的战斗部空中爆炸冲击波超压测试方法,对着靶速度为0、535和980 m/s的战斗部空中爆炸冲击波进行了测试分析。结果表明,基于地震波信号触发测试方法能可靠获取战斗部动爆冲击波超压峰值。试验成果可为实战复杂环境下基于实测数据研究动爆冲击波特性提供依据。
1. 基于地震波触发的冲击波超压测试系统
1.1 基于地震波触发的冲击波超压测试系统
为了验证基于地震波实现冲击波超压测试触发的可行性,设计了基于加速度信号触发的冲击波超压测试系统并进行了试验。测试系统主要包括传感器、信号调理电路、电源管理、无线通信和信号采集存储等五部分,测试系统组成如图1所示。进行冲击波超压测试时,信号调理电路对传感器获得的冲击波超压信号进行滤波、降噪,在进入FPGA (field programmable gate array)之前进行信号有无和是否达到触发阈值的判断,A/D控制模块将模拟信号转为数字信号后存储在外部同步动态存储器(synchronous dynamic random-access memory, SDRAM)中,最后通过USB (universal serial bus)或无线通信模块将数据上传到上位机上,在上位机上完成数据最终的显示、分析和处理。
1.2 基于地震波信号的冲击波测试触发原理
基于地震波信号的冲击波超压测试触发方法借助配置在各冲击波超压测试节点上的加速度计与信号调理电路,利用地震波传播速度比冲击波传播速度快的特点,在冲击波到达各测试节点之前,提前感应到的加速度信号,经专用调理电路处理后,触发该测试节点的冲击波超压信号存储。其触发原理如图2所示,冲击波超压信号采集缓存区划分为循环采集和时序采集两部分,通过加速度信号启动冲击波超压信号的循环采集完成第1步触发,通过预设超压阈值的比较进行第2步触发,满足触发条件时,立即固化循环采集区,并开始冲击波超压的时序采集。
爆炸时,形成以炸点为中心向四周传播的地震波,地震波传播速度最快的是纵波,其使地面发生上下振动,在地壳中的传播速度:
u0 =5.5~7 km/s。(1)根据金尼-格雷厄姆公式,计算冲击波超压峰值(
pp ,MPa):pppair=808[1+(fdR4.5)2]√1+(fdR0.048)2√1+(fdR0.032)2√1+(fdR1.35)2,fd=3√pairp0T0Tair (1) 式中:
R 为比例距离,是观测点到距爆炸中心的距离r(m)与炸药TNT当量W(kg)的立方根之比,即R=r/3√W ,本文中0.053m/kg1/3≤R≤500m/kg1/3 ;pair 为试验现场大气压;p0 为标准大气压,p0= 101.325kPa ;Tair 为试验现场大气温度;T0 为标准大气温度,T0=288.16K 。(2)根据Rankine-Hugoiot方程,爆炸点空气冲击波传播速度
u 与冲击波超压峰值pp 之间的关系为:u=√(ppp0×γ+12γ)+1⋅c0 (2) 式中:
p0 为大气压,γ 为空气的比热比,c0 为波阵面前的空气声速。(3)冲击波和地震波传播到观测点的平均时间差
Δt 为:Δt=r(1u−1u0) (3) 联立式(1)~(3)可得不同观测距离处冲击波传播平均速度及其与地震波传播平均时间差的关系,如图3所示。由图3(a)可以看出,冲击波超压值随爆距的增大而减小,当距离
r≥5m 时,冲击波的传播平均速度u≤995m/s ,该值远小于地震波的传播速度;由图3(b)可以看出,当距离r≥5m 时,冲击波与地震波传播到观测点的平均时间差Δt≥4.1ms ,而地震波信号触发该测点的冲击波信号只需要几十微秒,在该时间差内能够完成触发该测试节点的冲击波信号的存储。因此,当等效TNT装药量不大于100 kg、爆心距不小于5 m时,可以通过安装在测试终端的加速度计采集地震波信号,作为冲击波超压测试的可靠触发信号。图4是弹丸爆炸时在距爆心5 m处获取的加速度和冲击波超压信号,可以看出加速度信号的触发阈值先于冲击波信号到达测试节点,提前时长为12.42 ms,这进一步验证了基于地震波信号的冲击波测试触发方法原理的可行性。
2. 运动战斗部爆炸冲击波特性分析
2.1 动爆试验测试设置
为分析不同速度战斗部爆炸时冲击波场的分布规律,建立分布式动爆试验测试系统,采用球形裸装药,装药量为1.2 kg。比例距离R分别为4.71、9.41和14.12 m/kg1/3,战斗部着靶速度v0分别为0、535和980 m/s,火炮火药发射获得着靶速度,距目标炸点50 m处顺序放置4台天幕靶,每台间隔20 m,通过区截法获取弹丸在天幕靶处的飞行速度,再结合炮口靶获取的出炮口速度以及制式弹的外弹道模型,计算出目标炸点处弹丸速度。采用模块装药,速度为535和980 m/s弹丸的装药分别为3×B模块和6×B模块,每个B模块装药2.35 kg,引信采用瞬触发引信。战斗部与地靶平面的水平夹角β为45°,测点分布如图5所示,以爆炸中心为原点,建立三维坐标系Oxyz,分别在地靶平面距爆心5、10、15 m处安装冲击波超压测试装置。在Oxy平面上(即地靶平面),爆心到测试点的连线与x轴的夹角为θ,受试验条件限制,共24个测点。理论上测点越多,对爆炸冲击波的重建越有利。
2.2 爆炸冲击波特性分析
图6为比例距离R=4.71 m/kg1/3时不同方向上测得的冲击波超压时域曲线。由图6可知,以静爆条件下(v0=0 m/s)的冲击波超压时域曲线为参照,当θ=0°时,动爆冲击波超压远高于静爆冲击波超压;当θ增大到45°时,动爆冲击波超压有所下降,但是仍然高于静爆冲击波超压;当θ增大到90°时,动爆冲击波超压继续降低,v0对冲击波超压的影响变小,不同速度战斗部爆炸的冲击波超压趋于一致,与静爆冲击波压力相当;随着θ的进一步增大,动爆冲击波压力进一步降低,开始低于静爆冲击波压力;当θ增大到180°时,测点处于与战斗部速度完全相反的方向,为压力最低点,此时的冲击波超压远低于静爆冲击波超压。此外,在动爆冲击波超压高于静爆冲击波超压的方向上,即θ在0°~90°和270°~360°范围内时,v0越大,压力越高,冲击波到达时间越短;相反地,在动爆冲击波超压低于静爆冲击波超压的方向上,即θ在90°~270°范围内时,v0越大,压力越低,冲击波到达时间越长。
读取冲击波的超压峰值,得到不同速度战斗部的爆炸冲击波超压峰值对比曲线,如图7所示。由图7可知:(1)比例距离相同时,战斗部爆炸的冲击波超压峰值随θ的增大近似呈余弦衰减,当θ=0°时,超压峰值最大,θ=180°时,超压峰值最小,并且战斗部着靶速度v0越大,超压峰值衰减得越快;(2)以静爆冲击波超压峰值为参照,在与战斗部速度方向相同的区域(0°~90°和270°~360°),动爆冲击波存在较大的压力升,超压峰值大于静爆状态下的超压峰值,使得冲击波场呈现出局部高压区,而在与战斗部速度方向相反的区域(90°~270°),则存在较大的压力降。由此,可将运动战斗部的爆炸冲击波场分为压力升和压力降两个区域,分界点大约在θ=90°处。
根据战斗部动爆冲击波超压峰值pp,d与战斗部相对靶平面的速度
v′0 及静爆冲击波超压峰值pp,s的关系[4]:pp,dpp,s=(1+0.31+Rv′0c0cosθ)2 (4) 战斗部在靶平面的投影速度
v′0 为:v′0=v0cosβ (5) 由式(1)、(4)、(5)联合可得战斗部动爆冲击波超压峰值的经验公式计算值,实测战斗部动爆冲击波超压峰值pp,e与经验公式计算结果pp,d对比如表1所示,其中ε=(pp,e−pp,d)/pp,e。由表1可知,实测战斗部静爆冲击波超压峰值与经验公式计算结果一致性较好,除个别点外,实测战斗部动爆冲击波超压峰值与理论值较为接近,相对误差小于20%,且相对误差随着战斗部速度的增大而增大。此外,越靠近战斗部运动方向轴线(θ=0°和θ=180°)的实测冲击波超压峰值相对误差越大,垂直于战斗部运动方向轴线(θ=90°和θ=270°)的实测冲击波超压峰值相对误差较小。
表 1 试验结果与理论值对比Table 1. Comparison between experimental and theoretical resultsR/(m·kg−1/3) θ/(°) v0=0 m/s v0=535 m/s v0=980 m/s pp,e/kPa pp,d/kPa ε/% pp,e/kPa pp,d/kPa ε/% pp,e/kPa pp,d/kPa ε/% 4.71 0 321.39 317.35 1.26 434.86 355.57 18.23 483.16 389.02 19.48 45 343.49 317.35 7.61 384.34 344.15 10.46 392.65 367.28 6.46 90 342.92 317.35 7.45 285.10 317.35 −11.31 288.32 317.35 −10.07 135 335.52 317.35 5.41 270.90 291.64 −7.65 258.87 271.08 −4.72 180 320.94 317.35 1.12 228.45 281.30 −23.14 187.89 252.98 −34.64 225 294.20 317.35 −7.87 261.93 291.64 −11.34 215.23 271.08 −25.95 270 296.57 317.35 −7.01 285.98 317.35 −10.97 294.97 317.35 −7.59 315 319.73 317.35 0.74 368.50 344.15 6.61 402.27 367.28 8.70 9.41 0 112.04 104.86 6.41 127.36 111.70 12.30 149.08 117.54 21.15 45 110.61 104.86 5.19 110.62 109.67 0.86 118.86 113.76 4.30 90 100.10 104.86 −4.76 96.52 104.86 −8.65 96.21 104.86 −9.00 135 103.81 104.86 −1.02 88.96 100.16 −12.59 86.69 96.34 −11.13 180 106.88 104.86 1.89 90.35 98.25 −8.75 75.88 92.91 −22.44 225 102.12 104.86 −2.69 94.81 100.16 −5.64 88.06 96.34 −9.40 270 98.28 104.86 −6.70 99.25 104.86 −5.66 98.10 104.86 −6.90 315 111.00 104.86 5.53 118.45 109.67 7.41 123.47 113.76 7.86 14.12 0 63.87 63.04 1.31 74.87 65.85 12.05 78.23 68.24 12.77 45 63.23 63.04 0.30 66.35 65.02 2.01 69.56 66.69 4.12 90 57.72 63.04 −9.21 59.16 63.04 −6.55 59.03 63.04 −6.78 135 59.08 63.04 −6.70 57.75 61.08 −5.78 50.63 59.48 −17.48 180 60.51 63.04 −4.17 51.72 60.28 −16.56 45.73 58.04 −26.91 225 57.75 63.04 −9.16 53.69 61.08 −13.77 48.06 59.48 −23.77 270 57.78 63.04 −9.10 59.52 63.04 −5.92 57.52 63.04 −9.58 315 64.73 63.04 2.61 69.42 65.02 6.34 73.98 66.69 9.85 2.3 爆炸冲击波场重建
以表1中的冲击波超压峰值为插值点,利用MATLAB数据处理软件的薄板样条插值方法(thin-plate-spline interpolation)对实测数据进行插值(该插值方法可以使得三维超压曲面弯曲能量最小),得到战斗部速度分别为0、535、980 m/s的爆炸冲击波超压峰值场分布和等压曲线,如图8~10所示。由图8可知,战斗部静爆冲击波超压峰值在各个方向基本相同;由图9~10可知,战斗部动爆冲击波超压峰值在战斗部运动速度方向增强,在战斗部运动相反方向减弱,且战斗部速度越大,增强和减弱的程度越大。
3. 结 论
提出了一种基于地震波可靠触发的战斗部空中爆炸冲击波超压测试方法,并对速度为0、535和980 m/s的战斗部空中爆炸冲击波进行了测试研究,通过测试结果和经验公式计算值的对比分析,以及重建的战斗部动爆冲击波超压三维可视化模型,可以得出以下结论:
(1)本文中提出的测试方法能可靠获取战斗部动爆冲击波超压峰值;
(2)战斗部动爆冲击波超压峰值在战斗部运动速度方向增强,在战斗部运动相反方向减弱,且战斗部速度越大,增强和减弱的程度越大。
-
表 1 C5泡沫混凝土材料模型参数
Table 1. Parameters of C5 foam concrete material model
参数 取值 参数 取值 抗压强度fc 5 MPa 帽盖面参数R 6 抗拉强度T 0.5 MPa 硬化法则参数n 1000 弹性模量E 203.9 MPa 流动法则参数ω 0.5 泊松比ν 0.15 损伤参数ζ1 0.001 基体密度ρg 1400 kg/m3 损伤参数ζ2 3.0 断裂面参数a1 1.47 损伤参数ζ3 10-5 断裂面参数a2 0.058/ fc 损伤参数ζ4 1.5 帽盖面参数k0 3.2 MPa 损伤参数α 0.4 帽盖面参数X0 15 MPa 损伤参数χ 1 表 2 C10泡沫混凝土材料模型参数
Table 2. Parameters of C10 foam concrete material model
参数 取值 参数 取值 抗压强度fc 10 MPa 帽盖面参数R 6 抗拉强度T 1.0 MPa 硬化法则参数n 1000 弹性模量E 308.4 MPa 流动法则参数ω 0.5 泊松比ν 0.15 损伤参数ζ1 0.001 基体密度ρg 1400 kg/m3 损伤参数ζ2 3.0 断裂面参数a1 1.47 损伤参数ζ3 10-5 断裂面参数a2 0.058/ fc 损伤参数ζ4 1.5 帽盖面参数k0 7 MPa 损伤参数α 0.4 帽盖面参数X0 30 MPa 损伤参数χ 1 表 3 数值计算工况
Table 3. Working conditions for numerical simulation
工况 层数 防护结构 1 1 CF120+C5+C40 2 1 CF120+C10+C40 3 2 CF120+C5+C10+C40 4 2 CF120+C10+C5+C40 5 3 CF120+C3+C5+C10+C40 6 3 CF120+C3+C10+C5+C40 7 3 CF120+C5+C3+C10+C40 8 3 CF120+C10+C5+C3+C40 -
[1] 周辉, 任辉启, 吴祥云, 等. 成层式防护结构中分散层研究综述 [J]. 爆炸与冲击, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280.ZHOU H, REN H Q, WU X Y, et al. A review of sacrificial claddings in multilayer protective structure [J]. Explosion and Shock Waves, 2022, 42(11): 111101. DOI: 10.11883/bzycj-2022-0280. [2] SHEN J, REN X J. Experimental investigation on transmission of stress waves in sandwich samples made of foam concrete [J]. Defence Technology, 2013, 9(2): 110–114. DOI: 10.1016/j.dt.2013.06.002. [3] FENG S W, ZHOU Y, LI Q M. Damage behavior and energy absorption characteristics of foamed concrete under dynamic load [J]. Construction and Building Materials, 2015, 101: 990–1005. DOI: 10.1016/j.conbuildmat.2022.129340. [4] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007.ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei, Anhui, China: University of Science and Technology of China, 2007. [5] 杨亚, 孔祥振, 方秦, 等. 爆炸荷载下泡沫混凝土分配层最小厚度的计算方法 [J]. 爆炸与冲击, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.YANG Y, KONG X Z, FANG Q, et al. Calculation method for minimum thickness of foam concrete distribution layer under blast load [J]. Explosion and Shock Waves, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047. [6] 王代华, 刘殿书, 杜玉兰, 等. 含泡沫吸能层防护结构爆炸能量分布的数值模拟研究 [J]. 爆炸与冲击, 2006, 26(6): 562–567. DOI: 10.11883/1001-1455(2006)06-0562-06.WANG D H, LIU D S, DU Y L, et al. Numerical simulation of anti-blasting mechanism and energy distribution of composite protective structure with foam concrete [J]. Explosion and Shock Waves, 2006, 26(6): 562–567. DOI: 10.11883/1001-1455(2006)06-0562-06. [7] HALLQUIST J. LS-DYNA keyword user’s manual, version: 970 [M]. Livermore, USA: Livermore Software Technology Corporation, 2003: 179–182. [8] 张景飞, 冯明德, 陈金刚. 泡沫混凝土抗爆性能的试验研究 [J]. 混凝土, 2010, 10: 10–12. DOI: 10.3969/j.issn.1002-3550.2010.10.004.ZHANG J F, FENG M D, CHEN J G. Study on the knock characteristic of foam concrete [J]. Concrete, 2010, 10: 10–12. DOI: 10.3969/j.issn.1002-3550.2010.10.004. [9] 高全臣, 刘殿书, 王代华, 等. 泡沫混凝土复合防护结构的抗爆性能试验研究 [C]//第六届全国工程结构安全防护学术会议论文集. 北京: 中国力学学会, 2007: 120–123.GAO Q C, LIU D S, WANG D H, et al. Experimental study on anti-knock performance of foam concrete composite protective structure [C]//Proceedings of the 6th National Academic Conference on Safety Protection of Engineering Structures. Beijing, China: Chinese Society of Theoretical and Applied Mechanics, 2007: 120–123. [10] 杜玉兰, 王代华, 刘殿书, 等. 含泡沫混凝土层复合结构抗爆性能试验研究 [C]//首届全国水工抗震防灾学术会议论文集. 北京: 中国水力发电工程学会, 2006: 85–89.DU Y L, WANG D H, LIU D S, et al. Experimental research on the characteristics of anti-blast compound structures including foam concrete [C]//Proceedings of the First National Academic Conference on Earthquake Resistance and Disaster Prevention of Hydraulic Engineering. Beijing: China Society for Hydropower Engineering, 2006: 85–89. [11] GUO H, GUO W, SHI Y. Computational modeling of the mechanical response of lightweight foamed concrete over a wide range of temperatures and strain rates [J]. Construction and Building Materials, 2015, 96: 622–631. DOI: 10.1016/j.conbuildmat.2015.08.064. [12] SU B Y, ZHOU Z W, LI Z Q, et al. Experimental investigation on the mechanical behavior of foamed concrete under uniaxial and triaxial loading [J]. Construction and Building Materials, 2019, 209(6): 41–51. DOI: 10.1016/j.conbuildmat.2019.03.097. [13] HARDY R D, LEE M Y, BRONOWSKI D R. Laboratory constitutive characterization of cellular concrete: SAND2004-1030 [R]. Albuquerque, USA: Sandia National Laboratories, 2004. DOI: 10.2172/918757. [14] LIU C Y, HOU J, HAO Y F, et al. Effect of high strain rate and confinement on the compressive properties of autoclaved aerated concrete [J]. International Journal of Impact Engineering, 2021, 156: 103943. DOI: 10.1016/-j.ijimpeng.2021.103943. [15] 赵凯, 王肖钧, 刘飞, 等. 多孔材料中应力波的传播 [J]. 爆炸与冲击, 2011, 31(1): 107–112. DOI: 10.11883/1001-1455(2011)01-0107-06.ZHAO K, WANG X J, LIU F, et al. Propagation of stress wave in porous material [J]. Explosion and Shock Waves, 2011, 31(1): 107–112. DOI: 10.11883/1001-1455(2011)01-0107-06. [16] TAN X J, CHEN W Z, LIU H Y. Stress-strain characteristics of foamed concrete subjected to large deformation under uniaxial and triaxial compressive loading [J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018095.1–04018095.10. DOI: 10.1061/(ASCE)MT.1943-5533.0002311. [17] SHI S F, KONG X Z, FANG Q. A plastic-damage material model for foam concrete under blast loads [J]. International Journal of Impact Engineering, 2023, 177: 104596. DOI: 10.1016/j.ijimpeng.2023.104596. [18] KONG X, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006. [19] HUANG X P, KONG X Z, CHEN Z Y, et al. A plastic-damage model for rock-like materials focused on damage mechanisms under high pressure [J]. Computers and Geotechnics, 2021, 137: 104263. DOI: 10.1016/j.compg-eo.2021.104263. [20] FOSSUM A F, BRANNON R M. On a viscoplastic model for rocks with mechanism-dependent characteristic times [J]. Acta Geotechnica, 2006, 1(2): 89–106. DOI: 10.1007/s11440-006-0010-z. [21] KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016. [22] 袁璞, 马芹永, 张海东. 轻质泡沫混凝土SHPB试验与分析 [J]. 振动与冲击, 2014, 33(17): 116–119. DOI: 10.13465/j.cnki.Jvs.2014.17.021.YUAN P, MA Q Y, ZHANG H D. SHPB tests for light weight foam concrete [J]. Journal of Vibration and Shock, 2014, 33(17): 116–119. DOI: 10.13465/j.cnki.Jvs.2014.17.021. [23] 韩李斌, 杨黎明. 泡沫混凝土动态力学性能及破坏形式 [J]. 宁波大学学报(理工版), 2017, 30(1): 68–72. DOI: 1001-5132(2017)01-0068-05.HAN L B, YANG L M. Dynamic properties and failure types of foamed concrete [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2017, 30(1): 68–72. DOI: 1001-5132(2017)01-0068-05. [24] 黄海健, 宫能平, 穆朝民, 等. 泡沫混凝土动态力学性能及本构关系 [J]. 建筑材料学报, 2020, 23(2): 466–472. DOI: 10.3969/j.issn.1007-9629.2020.03.033.HUANG H J, GONG N P, MU C M, et al. Dynamic mechanical properties and constitutive relation of foam concrete [J]. Journal of Building Materials, 2020, 23(2): 466–472. DOI: 10.3969/j.issn.1007-9629.2020.03.033. [25] CUI J, HAO H, SHI Y C, et al. Experimental study of concrete damage under high hydrostatic pressure [J]. Cement and Concrete Research, 2017, 100: 140–152. DOI: 10.1177/2041419616633323. [26] WANG Y, KONG X Z, FANG Q. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815. [27] GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174(4): 104491. DOI: 10.1016/j.ijimpeng.2023.104491. [28] ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 122(10): 265–275. DOI: 10.1016/j.ijimpeng.2018.08.016. [29] ZHANG J H, CHEN L, WU H, et al. Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading [J]. Composite Structures, 2020, 241(6): 110859. DOI: 10.1016/j.compstruct.2019.04.031. [30] ZHANG J H, ZHANG Y D, FAN J Y, et al. Mesoscopic investigation of layered graded metallic foams under dynamic compaction [J]. Advances in Structural Engineering, 2018, 21(14): 2081–2098. DOI: 10.1177/1369433218766941. 期刊类型引用(0)
其他类型引用(3)
-