马赫杆加载下无氧铜的动态破碎

叶川兵 段志伟 李绪海 王曦 潘昊 俞宇颖 胡建波

叶川兵, 段志伟, 李绪海, 王曦, 潘昊, 俞宇颖, 胡建波. 马赫杆加载下无氧铜的动态破碎[J]. 爆炸与冲击, 2023, 43(11): 113101. doi: 10.11883/bzycj-2023-0172
引用本文: 叶川兵, 段志伟, 李绪海, 王曦, 潘昊, 俞宇颖, 胡建波. 马赫杆加载下无氧铜的动态破碎[J]. 爆炸与冲击, 2023, 43(11): 113101. doi: 10.11883/bzycj-2023-0172
YE Chuanbing, DUAN Zhiwei, LI Xuhai, WANG Xi, PAN Hao, YU Yuying, HU Jianbo. Dynamic fragmentation of oxygen-free high-conducting copper under Mach stem loading[J]. Explosion And Shock Waves, 2023, 43(11): 113101. doi: 10.11883/bzycj-2023-0172
Citation: YE Chuanbing, DUAN Zhiwei, LI Xuhai, WANG Xi, PAN Hao, YU Yuying, HU Jianbo. Dynamic fragmentation of oxygen-free high-conducting copper under Mach stem loading[J]. Explosion And Shock Waves, 2023, 43(11): 113101. doi: 10.11883/bzycj-2023-0172

马赫杆加载下无氧铜的动态破碎

doi: 10.11883/bzycj-2023-0172
基金项目: 国家自然科学基金(12072331)
详细信息
    作者简介:

    叶川兵(1997- ),硕士研究生, ychuanbing@foxmail.com

    通讯作者:

    胡建波(1980- ),博士,研究员, jianbo.hu@caep.cn

  • 中图分类号: O383

Dynamic fragmentation of oxygen-free high-conducting copper under Mach stem loading

  • 摘要: 为了深入了解金属材料在复杂加载下的动态破碎行为,在有限元模拟的基础上,设计了两类马赫杆加载实验,用于研究无氧铜在复杂加载下的动态破碎行为。实验中,采用火炮加载马赫透镜和激光粒子速度干涉仪测量自由面速度,实现了峰值压力分别为95.75和32.38 GPa的动态加载。结果表明,实验中成功实现了稳定的马赫杆加载,并且观察到马赫杆加载下无氧铜的2种不同近表面破碎模式,即高压下产生微层裂、低压下产生三角波层裂,且层裂区呈凸形分布。
  • 图  1  马赫透镜结构

    Figure  1.  Structure of Mach lens

    图  2  两类马赫杆加载下压力流场随时间演化的模拟结果

    Figure  2.  Numerically-simulated evolutions of pressure contours under two types of Mach stem loading

    图  3  实验Mach-1中圆柱试样靶中心线上等间距拉格朗日点的压强和速度模拟结果

    Figure  3.  Simulated velocity- and pressure-time evolutions of equidistant Lagrangian particles on the symmetrical centerline of the cylindrical specimen target in experiment Mach-1

    图  4  两类马赫杆加载实验设计

    Figure  4.  Experimental arrangements of two types of Mach stem loading

    图  5  实验Mach-1中铝套筒后自由面粒子速度剖面实验结果与模拟结果的比较

    Figure  5.  Comparison of rear free-surface particle velocity profiles of the aluminum sleeve in experiment Mach-1with the corresponding simulated ones

    图  6  实验 Mach-1中内圆柱中心处的DPS时谱图和自由面粒子速度剖面

    Figure  6.  DPS time-frequency spectrum and free-surface particle velocity profile at the center of the inner cylinder in experiment Mach-1

    图  7  实验Mach-2中不同位置处粒子速度剖面的实验结果与模拟结果的比较

    Figure  7.  Comparison of experimental and simulated results of particle velocity profiles at different positions in experiment Mach-2

    图  8  实验Mach-2中试样破坏形貌的模拟结果

    Figure  8.  Simulated failure morphologies of the specimen in experiment Mach-2

    表  1  Mie-Grüneisen状态方程参数[18-20]

    Table  1.   Parameters of Mie-Grüneisen equations of state[18-20]

    材料ρ0/(g·cm−3)c0/(km·s−1)sγ来源
    304不锈钢7.904.571.49 1.93文献[18]
    LY12铝2.795.371.29 2.0 文献[19]
    无氧铜8.933.941.4892.02文献[18]
    TC4钛合金4.425.131.0281.23文献[20]
    下载: 导出CSV

    表  2  Johnson-Cook本构模型参数[17, 21-23]

    Table  2.   Parameters of the Johnson-Cook constitutive model[17, 21-23]

    材料A/MPaB/MPanCmTm/K来源
    304不锈钢31010000.650.071.01673文献[21]
    LY12铝3696840.730.00831.7775文献[22]
    无氧铜902920.310.0251.091356文献[17]
    TC4钛合金8623310.340.0120.82110文献[23]
    下载: 导出CSV

    表  3  设计参数

    Table  3.   Parameters of experimental design

    实验编号 材料 飞片速度/(km·s−1) 厚度/mm 直径/mm
    飞片 外圆 内圆 飞片 样靶 内圆 外圆
    Mach-1 304不锈钢 LY12 铝 无氧铜 1.40 3.0 16.0 4.8 38.0
    Mach-2 304不锈钢 TC4钛合金 无氧铜 0.50 12.0 26.0 14.0 45.0
    下载: 导出CSV
  • [1] 陈华燕, 曾祥国, 朱文吉, 等. 爆炸荷载作用下桥梁动态响应及其损毁过程的数值模拟 [J]. 四川大学学报(工程科学版), 2011, 43(6): 15-19, 97. DOI: 10.15961/j.jsuese.2011.06.001.

    CHEN H Y, ZENG X G, ZHU W J, et al. Numerical simulation of dynamic response and damage process for bridge under blast loading [J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(6): 15–19, 97. DOI: 10.15961/j.jsuese.2011.06.001.
    [2] 朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-J2009-144.

    ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-J2009-144.
    [3] 陈大伟, 王裴, 孙海权, 等. 爆轰波对碰驱动平面锡飞层的动力学及动载行为特征研究 [J]. 物理学报, 2016, 65(2): 024701. DOI: 10.7498/aps.65.024701.

    CHEN D W, WANG P, SUN H Q, et al. Loading characteristics and dynamic behaviors of the plane tin flying layer driven by detonation collision [J]. Acta Physica Sinica, 2016, 65(2): 024701. DOI: 10.7498/aps.65.024701.
    [4] 张凤国, 刘军, 何安民, 等. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用 [J]. 物理学报, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.

    ZHANG F G, LIU J, HE A M, et al. Modelling of spall damage evolution and fragment distribution for melted metals under shock release [J]. Acta Physica Sinica, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.
    [5] 程素秋, 陈高杰, 高鑫, 等. 不同装药战斗部壳体对水中兵器的爆炸威力 [J]. 爆炸与冲击, 2018, 38(6): 1372–1377. DOI: 10.11883/bzycj-2017-0127.

    CHENG S Q, CHEN G J, GAO X, et al. Estimation of underwater explosive energy for different charge warhead shells [J]. Explosion and Shock Waves, 2018, 38(6): 1372–1377. DOI: 10.11883/bzycj-2017-0127.
    [6] WALSH J M, SHREFFLER R G, WILLIG F J. Limiting conditions for jet formation in high velocity collisions [J]. Journal of Applied Physics, 1953, 24(3): 349–359. DOI: 10.1063/1.1721278.
    [7] ASAY J R, MIX L P, PERRY F C. Ejection of material from shocked surfaces [J]. Applied Physics Letters, 1976, 29(5): 284–287. DOI: 10.1063/1.89066.
    [8] ASAY J R. Material ejection from shock-loaded free surfaces of aluminum and lead: SAND-76-0542 [R]. Albuquerque, USA: Sandia National Laboratories, 1976. DOI: 10.2172/7136578.
    [9] ASAY J R. Thick-plate technique for measuring ejecta from shocked surface [J]. Journal of Applied Physics, 1978, 49(12): 6173–6175. DOI: 10.1063/1.324545.
    [10] SORENSON D S, MINICH R W, ROMERO J L, et al. Ejecta particle size distributions for shock loaded Sn and Al metals [J]. Journal of Applied Physics, 2002, 92(10): 5830–5836. DOI: 10.1063/1.1515125.
    [11] OGORODNIKOV V A, MIKHAĬOV A L, BURTSEV V V, et al. Detecting the ejection of particles from the free surface of a shock-loaded sample [J]. Journal of Experimental and Theoretical Physics, 2009, 109(3): 530–535. DOI: 10.1134/S1063776109090180.
    [12] ESCOBEDO J P, DENNIS-Koller D, CERRETA E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper [J]. Journal of Applied Physics, 2011, 110(3): 033513. DOI: 10.1063/1.3607294.
    [13] FOWLES G R, ISBELL W M. Method for Hugoniot equation-of-state measurements at extreme pressures [J]. Journal of Applied Physics, 1965, 36(4): 1377–1379. DOI: 10.1063/1.1714313.
    [14] BROWN J L, RAVICHANDRAN G, REINHART W D, et al. High pressure Hugoniot measurements using converging shocks [J]. Journal of Applied Physics, 2011, 109(9): 093520. DOI: 10.1063/1.3590140.
    [15] THADHANI N N. Shock compression processing of powders [J]. Advanced Materials and Manufacturing Processes, 1988, 3(4): 493–549. DOI: 10.1080/10426918808953217.
    [16] 汤文辉. 冲击波物理[M]. 北京: 科学出版社, 2011: 174–181.
    [17] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C]// Proceedings of 7th International Symposium on Ballistics. The Hague, 1983: 541–547.
    [18] ANSYS AUTODYN Material [DB]. ANSYS, 2019.
    [19] 俞宇颖, 谭华, 胡建波, 等. 钽和LY12铝的高压声速测量 [J]. 爆炸与冲击, 2006, 26(6): 486–491. DOI: 10.11883/1001-1455(2006)06-0486-06.

    YU Y Y, TAN H, HU J B, et al. Measurements of sound velocities in shock-compressed tantalum and LY12 Al [J]. Explosion and Shock Waves, 2006, 26(6): 486–491. DOI: 10.11883/1001-1455(2006)06-0486-06.
    [20] WANG X M, SHI J. Validation of Johnson-Cook plasticity and damage model using impact experiment [J]. International Journal of Impact Engineering, 2013, 60: 67–75. DOI: 10.1016/j.ijimpeng.2013.04.010.
    [21] LEE S, BARTHELAT F, HUTCHHINSON J W, et al. Dynamic failure of metallic pyramidal truss core materials: experiments and modeling [J]. International Journal of Plasticity, 2006, 22(11): 2118–2145. DOI: 10.1016/j.ijplas.2006.02.006.
    [22] 侯日立, 周平, 彭建祥. 冲击波作用下LY12铝合金结构毁伤的数值模拟 [J]. 爆炸与冲击, 2012, 32(5): 470–474. DOI: 10.11883/1001-1455(2012)05-0470-05.

    HOU R L, ZHOU P, PENG J X. Numerical simulation of shock damage of LY12 aluminium alloy sructure [J]. Explosion and Shock Waves, 2012, 32(5): 470–474. DOI: 10.11883/1001-1455(2012)05-0470-05.
    [23] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数书册 [M]. 北京: 机械工业出版社, 2020: 139.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  76
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-10
  • 修回日期:  2023-05-22
  • 网络出版日期:  2023-07-19
  • 刊出日期:  2023-11-17

目录

    /

    返回文章
    返回