Dynamic fragmentation of oxygen-free high-conducting copper under Mach stem loading
-
摘要: 为了深入了解金属材料在复杂加载下的动态破碎行为,在有限元模拟的基础上,设计了两类马赫杆加载实验,用于研究无氧铜在复杂加载下的动态破碎行为。实验中,采用火炮加载马赫透镜和激光粒子速度干涉仪测量自由面速度,实现了峰值压力分别为95.75和32.38 GPa的动态加载。结果表明,实验中成功实现了稳定的马赫杆加载,并且观察到马赫杆加载下无氧铜的2种不同近表面破碎模式,即高压下产生微层裂、低压下产生三角波层裂,且层裂区呈凸形分布。Abstract: To in-depth understand the dynamic fracture behaviors of metal materials under complex loading, based on the finite element simulation, two types of Mach stem loading experiments were designed and carried out to investigate the dynamic fragmentation of oxygen-free high-conducting copper (OFHC Cu) under complex loading. In the experiments, a powder gun was used to impact the Mach lens, and a laser particle-velocity interferometer was applied to measure the free surface velocity. And dynamic loadings with the peak pressures of 95.75 and 32.38 GPa, respectively, were achieved. Stable Mach stem loading was successfully generated, and the Mach stem-related features were consistent with the simulated ones. At the same time, two different near-surface fracture behaviors in the OFHC Cu were observed, namely the micro-spallation under high pressure and the triangular-wave spallation under low pressure, with the cracked area distributed in a convex shape. These findings have a certain value for further understanding the dynamic fracture behaviors of metal materials and can provide new experimental methods for understanding material failure under various complex loading conditions.
-
Key words:
- Mach stem /
- micro-spallation /
- OFHC Cu /
- dynamic fragmentation
-
表 3 设计参数
Table 3. Parameters of experimental design
实验编号 材料 飞片速度/(km·s−1) 厚度/mm 直径/mm 飞片 外圆 内圆 飞片 样靶 内圆 外圆 Mach-1 304不锈钢 LY12 铝 无氧铜 1.40 3.0 16.0 4.8 38.0 Mach-2 304不锈钢 TC4钛合金 无氧铜 0.50 12.0 26.0 14.0 45.0 -
[1] 陈华燕, 曾祥国, 朱文吉, 等. 爆炸荷载作用下桥梁动态响应及其损毁过程的数值模拟 [J]. 四川大学学报(工程科学版), 2011, 43(6): 15-19, 97. DOI: 10.15961/j.jsuese.2011.06.001.CHEN H Y, ZENG X G, ZHU W J, et al. Numerical simulation of dynamic response and damage process for bridge under blast loading [J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(6): 15–19, 97. DOI: 10.15961/j.jsuese.2011.06.001. [2] 朱建士, 胡晓棉, 王裴, 等. 爆炸与冲击动力学若干问题研究进展 [J]. 力学进展, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-J2009-144.ZHU J S, HU X M, WANG P, et al. A review on research progress in explosion mechanics and impact dynamics [J]. Advances in Mechanics, 2010, 40(4): 400–423. DOI: 10.6052/1000-0992-2010-4-J2009-144. [3] 陈大伟, 王裴, 孙海权, 等. 爆轰波对碰驱动平面锡飞层的动力学及动载行为特征研究 [J]. 物理学报, 2016, 65(2): 024701. DOI: 10.7498/aps.65.024701.CHEN D W, WANG P, SUN H Q, et al. Loading characteristics and dynamic behaviors of the plane tin flying layer driven by detonation collision [J]. Acta Physica Sinica, 2016, 65(2): 024701. DOI: 10.7498/aps.65.024701. [4] 张凤国, 刘军, 何安民, 等. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用 [J]. 物理学报, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340.ZHANG F G, LIU J, HE A M, et al. Modelling of spall damage evolution and fragment distribution for melted metals under shock release [J]. Acta Physica Sinica, 2022, 71(24): 244601. DOI: 10.7498/aps.71.20221340. [5] 程素秋, 陈高杰, 高鑫, 等. 不同装药战斗部壳体对水中兵器的爆炸威力 [J]. 爆炸与冲击, 2018, 38(6): 1372–1377. DOI: 10.11883/bzycj-2017-0127.CHENG S Q, CHEN G J, GAO X, et al. Estimation of underwater explosive energy for different charge warhead shells [J]. Explosion and Shock Waves, 2018, 38(6): 1372–1377. DOI: 10.11883/bzycj-2017-0127. [6] WALSH J M, SHREFFLER R G, WILLIG F J. Limiting conditions for jet formation in high velocity collisions [J]. Journal of Applied Physics, 1953, 24(3): 349–359. DOI: 10.1063/1.1721278. [7] ASAY J R, MIX L P, PERRY F C. Ejection of material from shocked surfaces [J]. Applied Physics Letters, 1976, 29(5): 284–287. DOI: 10.1063/1.89066. [8] ASAY J R. Material ejection from shock-loaded free surfaces of aluminum and lead: SAND-76-0542 [R]. Albuquerque, USA: Sandia National Laboratories, 1976. DOI: 10.2172/7136578. [9] ASAY J R. Thick-plate technique for measuring ejecta from shocked surface [J]. Journal of Applied Physics, 1978, 49(12): 6173–6175. DOI: 10.1063/1.324545. [10] SORENSON D S, MINICH R W, ROMERO J L, et al. Ejecta particle size distributions for shock loaded Sn and Al metals [J]. Journal of Applied Physics, 2002, 92(10): 5830–5836. DOI: 10.1063/1.1515125. [11] OGORODNIKOV V A, MIKHAĬOV A L, BURTSEV V V, et al. Detecting the ejection of particles from the free surface of a shock-loaded sample [J]. Journal of Experimental and Theoretical Physics, 2009, 109(3): 530–535. DOI: 10.1134/S1063776109090180. [12] ESCOBEDO J P, DENNIS-Koller D, CERRETA E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper [J]. Journal of Applied Physics, 2011, 110(3): 033513. DOI: 10.1063/1.3607294. [13] FOWLES G R, ISBELL W M. Method for Hugoniot equation-of-state measurements at extreme pressures [J]. Journal of Applied Physics, 1965, 36(4): 1377–1379. DOI: 10.1063/1.1714313. [14] BROWN J L, RAVICHANDRAN G, REINHART W D, et al. High pressure Hugoniot measurements using converging shocks [J]. Journal of Applied Physics, 2011, 109(9): 093520. DOI: 10.1063/1.3590140. [15] THADHANI N N. Shock compression processing of powders [J]. Advanced Materials and Manufacturing Processes, 1988, 3(4): 493–549. DOI: 10.1080/10426918808953217. [16] 汤文辉. 冲击波物理[M]. 北京: 科学出版社, 2011: 174–181. [17] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures [C]// Proceedings of 7th International Symposium on Ballistics. The Hague, 1983: 541–547. [18] ANSYS AUTODYN Material [DB]. ANSYS, 2019. [19] 俞宇颖, 谭华, 胡建波, 等. 钽和LY12铝的高压声速测量 [J]. 爆炸与冲击, 2006, 26(6): 486–491. DOI: 10.11883/1001-1455(2006)06-0486-06.YU Y Y, TAN H, HU J B, et al. Measurements of sound velocities in shock-compressed tantalum and LY12 Al [J]. Explosion and Shock Waves, 2006, 26(6): 486–491. DOI: 10.11883/1001-1455(2006)06-0486-06. [20] WANG X M, SHI J. Validation of Johnson-Cook plasticity and damage model using impact experiment [J]. International Journal of Impact Engineering, 2013, 60: 67–75. DOI: 10.1016/j.ijimpeng.2013.04.010. [21] LEE S, BARTHELAT F, HUTCHHINSON J W, et al. Dynamic failure of metallic pyramidal truss core materials: experiments and modeling [J]. International Journal of Plasticity, 2006, 22(11): 2118–2145. DOI: 10.1016/j.ijplas.2006.02.006. [22] 侯日立, 周平, 彭建祥. 冲击波作用下LY12铝合金结构毁伤的数值模拟 [J]. 爆炸与冲击, 2012, 32(5): 470–474. DOI: 10.11883/1001-1455(2012)05-0470-05.HOU R L, ZHOU P, PENG J X. Numerical simulation of shock damage of LY12 aluminium alloy sructure [J]. Explosion and Shock Waves, 2012, 32(5): 470–474. DOI: 10.11883/1001-1455(2012)05-0470-05. [23] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数书册 [M]. 北京: 机械工业出版社, 2020: 139.