Analysis of the enhancement effect of UHMWPE backplate thickness on the penetration resistance of aluminum composite panels
-
摘要: 为研究超高分子聚乙烯(ultra-high molecular weight polyethylene, UHMWPE)背板厚度对铝复合板抗钨球侵彻效果的影响,利用数字图像相关方法(digital image correlation method, DIC)与X射线电子计算机断层扫描(computed tomography, CT)得到UHMWPE受到冲击后的动态响应及局部破坏。建立钨球以不同速度侵彻Al/UHMWPE复合板的有限元模型,研究不同冲击速度下UHMWPE背板厚度对复合靶板吸能性能的影响,所用背板厚度为1.6~20 mm。结果表明:铝板在冲击作用下发生绝热剪切破坏,正交铺设纤维层产生纤维凸起和分叉应变带。随着背板厚度增大,纤维层由剪切破坏向拉伸破坏过度,纤维层应变带由十字形转变为X形。UHMWPE板厚度的增大有效地阻碍了铝块塞体运动,从而增加了破片侵彻铝板的时间与动能消耗。UHMWPE背板厚度对吸能性能影响呈先快速上升至阈值,后缓慢下降的趋势,说明PE板到达一定厚度后,通过增加厚度的方法来提升其吸能性能的作用有限。Abstract: Ultra-high molecular weight polyethylene (UHMWPE) fibers are widely used in explosive fragment protection due to their high modulus, high strength, and low density. To study the effect of UHMWPE backplate thickness on the penetration resistance effect of aluminum composite panel, the digital image correlation method (DIC) and computed tomography (CT) were used to obtain the dynamic response and local failure of UHMWPE. A finite element model of a tungsten ball penetrating an Al/PE composite plate with different speeds (500, 1000, and 1500 m/s) was established, and the simulated results were found to be in good agreement with the experimental results. The influence of PE backplate thickness on the energy absorption performance and strain of the composite target plate was mainly studied, and the thickness of the backplate was 1.6-20 mm. The results demonstrate that the aluminum plate undergoes adiabatic shear failure under the impact, and the fiber layers are laid orthogonally to produce fiber bulges and bifurcated strain bands under tension. The fiber bulge and cross-shaped strain band bifurcation phenomenon occur when the fragments penetrate the orthogonally laid fibers. With the increase of the PE plate thickness, the main failure of the fiber layers changes from shear failure to tensile failure, and the strain band of the fiber layers changes from cross shape to X shape. Increasing the thickness of the PE plate hinders the movement of the plug body of the aluminum block, thereby increasing the time and kinetic energy consumption of the fragment penetrating the aluminum plate. When the impact velocity is 500, 1000 and 1500 m/s, the optimal areal density absorption energy thickness respectively is 6.4, 12, and 16 mm, and the surface density energy absorption respectively is 14.55, 49.51 and 98.07 J·(kg·m2). The influence of PE composite plate thickness on energy absorption performance first rises rapidly to the threshold and then slowly decreases, this result shows that increasing the PE plate thickness is limited in improving its energy absorption performance after reaching a certain thickness.
-
表 1 UHMWPE材料参数
Table 1. Material parameters of UHMWPE
ρ/(kg·m−3) E11/MPa E22/MPa E33/MPa ν12 ν13 ν23 970 95000 95000 11300 0.3 0.3 0.4 G12/MPa G13/MPa G23/MPa Xt/MPa Xc/MPa Yt/MPa 6000 6000 3600 3048 1580 130 Yc/MPa Zt/MPa Zc/MPa S12/MPa S13/MPa S23/MPa 650 340 180 130 130 130 表 2 Camanho 折减模型
Table 2. Camanho reduction model
失效模型 折减方法 纤维拉伸失效 $E^{\mathrm{d}}_{11} $=0.07E11 纤维压缩失效 $E^{\mathrm{d}}_{11} $=0.14E11 基体拉伸或剪切失效 $E^{\mathrm{d}}_{22} $=0.2E22,$G^{\mathrm{d}}_{12} $=0.2G12 基体压缩或剪切失效 $E^{\mathrm{d}}_{22} $=0.4E22,$G^{\mathrm{d}}_{12} $=0.4G12 表 3 侵彻靶板数值模拟与实验数据对比
Table 3. Comparison between simulation and experiment in penetration process
靶板厚度/mm 靶板结构 破片初速/(m·s−1) 破片末速/(m·s−1) 误差/% 数值模拟 实验 速度 动能 10.02 Al 1027.49 823.83 844.88 2.5 4.92 10.01 Al 861.67 682.44 658.75 3.6 7.32 10.01 Al 1020.48 822.30 835.62 1.6 3.16 10.01 Al 1283.26 1043.31 1093.19 4.6 8.92 10.00 Al 1091.24 879.88 856.74 2.7 5.47 12.00 Al/UHMWPE 1031.03 815.47 815.51 0.0 0.01 13.30 Al/UHMWPE 1109.26 837.90 882.61 5.1 9.87 14.40 Al/UHMWPE 1015.25 736.59 721.04 2.2 4.36 15.60 Al/UHMWPE 1071.68 725.44 736.71 1.5 3.04 17.40 Al/UHMWPE 988.45 517.27 500.82 3.3 6.68 -
[1] ZAERA R, SANCHEZ-GALVEZ V. Analytical modeling of normal and oblique ballistic impact on ceramic/metal lightweight armors [J]. International Journal of Impact Engineering, 1998, 21(3): 133–148. DOI: 10.1016/s0734-743x(97)00035-3. [2] FELI S, AALEAGHA M E A, AHMADI Z. A new analytical model of normal penetration of projectiles into the light-weight ceramic-metal targe [J]. International Journal of Impact Engineering, 2010, 37(5): 561–567. DOI: 10.1016/j.ijimpeng.2009.10.006. [3] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C]//AIP Conference Proceedings. Colorado, 1994: 981–984. DOI: 10.1063/1.46199. [4] BURGER D, FARIA A R D, ALMEIDA S F M D, et al. Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours [J]. International Journal of Impact Engineering, 2012, 43(5): 63–77. DOI: 10.1016/j.ijimpeng.2011.12.001. [5] ZUKAS J A, SCHEFFLER D R. Impact effects in multilayered plates [J]. International Journal of Solids and Structures, 2001, 38(19): 3321–3328. DOI: 10.1016/S0020-7683(00)00260-2. [6] CORRAN R S J, SHADBOLT P J, RUIZ C. Impact loading of plates: an experimental investigation [J]. International Journal of Impact Engineering, 1983, 1(1): 3–22. DOI: 10.1016/0734-743X(83)90010-6. [7] DEY S, BORVIK T, HOPPERSTAD O S, et al. On the influence of constitutive relation in projectile impact of steel plates [J]. International Journal of Impact Engineering, 2007, 34(3): 464–486. DOI: 10.1016/j.ijimpeng.2005.10.003. [8] 马小敏, 李世强, 李鑫, 等. 编织Kevlar/Epoxy复合材料层合板在冲击荷载下的动态响应 [J]. 爆炸与冲击, 2016, 36(2): 170–176. DOI: 10.11883/1001-1455(2016)02-0170-07.MA X M, LI S Q, LI X, et al. Dynamic response of woven Kevlar/Epoxy composite laminate under impact loading [J]. Explosion and Shock Waves, 2016, 36(2): 170–176. DOI: 10.11883/1001-1455(2016)02-0170-07. [9] 李茂, 朱锡, 侯海量, 等. 冲击波和高速破片联合作用下固支方板毁伤效应数值模拟 [J]. 国防科技大学学报, 2017, 39(6): 64–70. DOI: 10.11887/j.cn.201706011.LI M, ZHU X, HOU H L, et al. Numerical simulation of the damage effects of clamped square plate subjected to the impact of blast wave and fragments [J]. Journal of National University of Defense Technology, 2017, 39(6): 64–70. DOI: 10.11887/j.cn.201706011. [10] 秦溶蔓, 朱波, 乔琨, 等. 陶瓷/纤维复合材料层间混杂结构对装甲板抗侵彻性能的影响 [J]. 材料导报, 2020, 34(18): 183–187. DOI: 10.11896/cldb.20030208.QIN R M, ZHU B, QIAO K, et al. Effect of hybrid structure of ceramic/fiber composite material on penetration resistance of armor plate [J]. Materials Reports, 2020, 34(18): 183–187. DOI: 10.11896/cldb.20030208. [11] 谢文波, 张伟, 姜雄文. 钢球斜侵彻碳纤维复合材料板的实验研究 [J]. 爆炸与冲击, 2018, 38(3): 647–653. DOI: 10.11883/bzycj-2016-0289.XIE W B, ZHANG W, JIANG X W. Oblique on CFRPs by steel sphere [J]. Explosion and Shock Waves, 2018, 38(3): 647–653. DOI: 10.11883/bzycj-2016-0289. [12] 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制 [J]. 复合材料学报, 2021, 38(5): 1455–1467. DOI: 10.13801/j.cnki.fhclxb.20200722.003.HE Y M, JIAO Y N, ZHOU Q, et al. Ballistic performance of ultrahigh molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism [J]. Acta Materiae Compos-itae Sinica, 2021, 38(5): 1455–1467. DOI: 10.13801/j.cnki.fhclxb.20200722.003. [13] 王敏, 文鹤鸣. 碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟 [J]. 爆炸与冲击, 2022, 42(3): 033102. DOI: 10.11883/bzycj-2021-0050.WANG M, WEN H M. Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading [J]. Explosion and Shock Waves, 2022, 42(3): 033102. DOI: 10.11883/bzycj-2021-0050. [14] 刘铁, 史洪刚, 程新, 等. 钨合金帽型试样的绝热剪切带数值模拟研究 [J]. 兵器材料科学与工程, 2008,31(2): 75–79. DOI: 10.3969/j.issn.1004-244X.2008.02.020.LIU T, SHI H G, CHENG X, et al. Numerical simulation for adiabatic shear bands of WHA in hat specimen [J]. Ordnance Materials Science and Engineering, 2008,31(2): 75–79. DOI: 10.3969/j.issn.1004-244X.2008.02.020. [15] 王雷, 李玉龙, 索涛, 等. 航空常用铝合金动态拉伸力学性能探究 [J]. 航空材料学报, 2013, 33(4): 71–77. DOI: 10.3969/j.issn.1005-5053.2013.4.013.WANG L, LI Y L, SUO T, et al. Mechanical behavior of commonly used aeronautical aluminum alloys under dynamic tension [J]. Journal of Aeronautical Materials, 2013, 33(4): 71–77. DOI: 10.3969/j.issn.1005-5053.2013.4.013. [16] 张帝. FRP-PU加固粘土砖砌体墙抗动载性能研究 [D]. 北京: 北京理工大学, 2021: 17–38.ZHANG D. Research on the performance of FRP-PU reinforced clay brick masonry wall against dynamic loads [D]. Beijing: Beijing Institute of Technology, 2021: 17–28. [17] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. DOI: 10.1177/002199838702100904. [18] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates [J]. Journal of Composite Materials, 1999, 33(24): 2248–2280. DOI: 10.1177/002199839903302402. [19] HAN Q , LI H , CHEN X , et al. Impact resistant basalt fiber-reinforced aluminum laminate with Janus helical structures inspired by lobster and mantis shrimp [J]. Composite structures, 2022, 291(7): 115551. DOI: 10.1016/j.compstruct.2022.115551. [20] 胡年明, 陈长海, 朱锡, 等. 陶瓷与芳纶层合板叠层结构抗侵彻性能试验研究 [J]. 兵工学报, 2018, 39(5): 976–982. DOI: 10.3969/j.issn.1000-1093.2018.05.018.HU N M, CHEN C H, ZHU X, et al. Experimental research on anti-penetration performance of stacked structure of ceramic /Kevlar composite laminates [J]. Acta Armamentarii, 2018, 39(5): 976–982. DOI: 10.3969/j.issn.1000-1093.2018.05.018. [21] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates [J]. Composite Structures, 2003, 61: 161–173. DOI: 10.1016/S0263-8223(03)00029-1. [22] CUNNIFF P M. An analysis of the system effects of woven fabrics under ballistic impact [J]. Textile Research Journal, 1992, 13(5): 385–395. DOI: 10.1177/004051759206200902. [23] 解亚宸, 黄广炎, 张宏, 等. UHMWPE纤维二维织物抗弹道冲击性能 [J]. 兵工学报, 2022, 43(09): 2152–2163. DOI: 10.12382/bgxb.2021.0648.XIE Y C, HUANG G Y, ZHANG H, et al. Ballistic performance of two-dimensional UHMWPE fabric [J]. Acta Armamentarii, 2022, 43(9): 2152–2163. DOI: 10.12382/bgxb.2021.0648. [24] LONG H N, LASSIG T R, RYAN S, et al. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact [J]. Composites Part: A Applied Science & Manufacturing, 2016, 84: 224–235. DOI: 10.1016/j.compositesa.2016.01.014. [25] 余毅磊, 王晓东, 任文科, 等. UHMWPE背板铺层角度对陶瓷复合靶板抗弹性的影响 [J]. 北京理工大学学报, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.YU Y L, WANG X D, REN W K, et al. Effect of UHMWPE back plate layering angle on the anti-elasticity of ceramic composite target plate [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209. [26] 张友敏. SiC陶瓷/UHMWPE复合装甲弹道性能研究 [D]. 长沙: 湖南大学, 2018: 12–32.ZHANG Y M. Investigation on the ballistic behavior of the SiC ceramic/UHMWPE composite armor [D]. Changsha: Hunan University, 2018: 12–32. [27] 赵晓旭, 徐豫新, 田非, 等. 钢/纤维复合板对破片弹速侵彻吸能机制及分析方法 [J]. 兵工学报, 2014, 35(S2): 309–315. DOI: CNKI:SUN:BIGO.0.2014-S2-058.ZHAO X X, XU Y X, TIAN F, et al. The energy absorption mechanism and analysis method of steel/fiber composite plate against fragment impact at projectile velocity [J]. Acta Armamentarii, 2014, 35(S2): 309–315. DOI: CNKI:SUN:BIGO.0.2014-S2-058.