UHMWPE背板厚度对铝复合板抗侵彻增强效应分析

杨可谞 何成龙 霍子怡 毛翔

杨可谞, 何成龙, 霍子怡, 毛翔. UHMWPE背板厚度对铝复合板抗侵彻增强效应分析[J]. 爆炸与冲击, 2024, 44(2): 023103. doi: 10.11883/bzycj-2023-0176
引用本文: 杨可谞, 何成龙, 霍子怡, 毛翔. UHMWPE背板厚度对铝复合板抗侵彻增强效应分析[J]. 爆炸与冲击, 2024, 44(2): 023103. doi: 10.11883/bzycj-2023-0176
YANG Kexu, HE Chenglong, HUO Ziyi, MAO Xiang. Analysis of the enhancement effect of UHMWPE backplate thickness on the penetration resistance of aluminum composite panels[J]. Explosion And Shock Waves, 2024, 44(2): 023103. doi: 10.11883/bzycj-2023-0176
Citation: YANG Kexu, HE Chenglong, HUO Ziyi, MAO Xiang. Analysis of the enhancement effect of UHMWPE backplate thickness on the penetration resistance of aluminum composite panels[J]. Explosion And Shock Waves, 2024, 44(2): 023103. doi: 10.11883/bzycj-2023-0176

UHMWPE背板厚度对铝复合板抗侵彻增强效应分析

doi: 10.11883/bzycj-2023-0176
基金项目: 山西省自然科学基金面上基金项目(20210302124197);中国博士后科学基金(2021M702981)
详细信息
    作者简介:

    杨可谞(1999- ),男,硕士研究生,s202201007@st.nuc.edu.cn

    通讯作者:

    何成龙(1988- ),男,博士,副教授,hechenglong@nuc.edu.cn

  • 中图分类号: O385; TJ04

Analysis of the enhancement effect of UHMWPE backplate thickness on the penetration resistance of aluminum composite panels

  • 摘要: 为研究超高分子聚乙烯(ultra-high molecular weight polyethylene, UHMWPE)背板厚度对铝复合板抗钨球侵彻效果的影响,利用数字图像相关方法(digital image correlation method, DIC)与X射线电子计算机断层扫描(computed tomography, CT)得到UHMWPE受到冲击后的动态响应及局部破坏。建立钨球以不同速度侵彻Al/UHMWPE复合板的有限元模型,研究不同冲击速度下UHMWPE背板厚度对复合靶板吸能性能的影响,所用背板厚度为1.6~20 mm。结果表明:铝板在冲击作用下发生绝热剪切破坏,正交铺设纤维层产生纤维凸起和分叉应变带。随着背板厚度增大,纤维层由剪切破坏向拉伸破坏过度,纤维层应变带由十字形转变为X形。UHMWPE板厚度的增大有效地阻碍了铝块塞体运动,从而增加了破片侵彻铝板的时间与动能消耗。UHMWPE背板厚度对吸能性能影响呈先快速上升至阈值,后缓慢下降的趋势,说明PE板到达一定厚度后,通过增加厚度的方法来提升其吸能性能的作用有限。
  • 图  1  Al/UHMWPE靶板制作流程

    Figure  1.  Al/UHMWPE target fabrication process

    图  2  实验场地布置

    Figure  2.  Experimental site layout

    图  3  靶板固定方式与高速相机拍摄示意图

    Figure  3.  Schematic diagram of target plate fixing method and high-speed camera shooting

    图  4  复合材料靶板数值模型示意图

    Figure  4.  Schematic diagram of a composite target simulation model

    图  5  子程序分析流程图[16]

    Figure  5.  Subroutines analysis flowchart[16]

    图  6  靶板吸收破片动能的实验和数值模拟结果对比

    Figure  6.  Comparison between experimental and simulated kinetic energy absorption of the target plate

    图  7  1020和1431 m/s初度破片侵彻下PE复合板DIC分析

    Figure  7.  DIC analysis of PE composite plate penetrated by fragment at the velocities of 1020 and 1431 m/s

    图  8  1020和1431 m/s初度破片侵彻下Al/UHMWPE复合板应变传播云图

    Figure  8.  Strain propagation cloud diagrams of Al/UHMWPE composite plate penetrated by fragments with the velocities of 1020 and 1431 m/s

    图  9  1431 m/s初速破片侵彻下Al/UHMWPE复合板中 Mises应力传播云图

    Figure  9.  Mises stress propagation distribution of Al/UHMWPE composite plate penetrated by the fragment with the velocity of 1431 m/s

    图  10  PE复合板弹孔周围局部破坏

    Figure  10.  Local destruction around the bullet hole of the PE composite plate

    图  11  贯穿靶板前后应变云图

    Figure  11.  Runs through the target plate successively strain cloud map

    图  12  破片侵彻过程中动能吸收时程曲线

    Figure  12.  Kinetic energy absorption history during fragment penetration process

    图  13  破片侵彻过程中的复合板剖面图

    Figure  13.  Cross-sectional view of the composite panel during fragment penetration

    图  14  500、1000和1500 m/s侵彻速度下靶板的吸能性能与靶板厚度关系

    Figure  14.  Relation between energy absorption performance of the target plate and its thickness at the penetration velocity of 500, 1000 and 1500 m/s

    表  1  UHMWPE材料参数

    Table  1.   Material parameters of UHMWPE

    ρ/(kg·m−3) E11/MPa E22/MPa E33/MPa ν12 ν13 ν23
    970 95000 95000 11300 0.3 0.3 0.4
    G12/MPa G13/MPa G23/MPa Xt/MPa Xc/MPa Yt/MPa
    6000 6000 3600 3048 1580 130
    Yc/MPa Zt/MPa Zc/MPa S12/MPa S13/MPa S23/MPa
    650 340 180 130 130 130
    下载: 导出CSV

    表  2  Camanho 折减模型

    Table  2.   Camanho reduction model

    失效模型 折减方法
    纤维拉伸失效 $E^{\mathrm{d}}_{11} $=0.07E11
    纤维压缩失效 $E^{\mathrm{d}}_{11} $=0.14E11
    基体拉伸或剪切失效 $E^{\mathrm{d}}_{22} $=0.2E22,$G^{\mathrm{d}}_{12} $=0.2G12
    基体压缩或剪切失效 $E^{\mathrm{d}}_{22} $=0.4E22,$G^{\mathrm{d}}_{12} $=0.4G12
    下载: 导出CSV

    表  3  侵彻靶板数值模拟与实验数据对比

    Table  3.   Comparison between simulation and experiment in penetration process

    靶板厚度/mm 靶板结构 破片初速/(m·s−1) 破片末速/(m·s−1) 误差/%
    数值模拟 实验 速度 动能
    10.02 Al 1027.49 823.83 844.88 2.5 4.92
    10.01 Al 861.67 682.44 658.75 3.6 7.32
    10.01 Al 1020.48 822.30 835.62 1.6 3.16
    10.01 Al 1283.26 1043.31 1093.19 4.6 8.92
    10.00 Al 1091.24 879.88 856.74 2.7 5.47
    12.00 Al/UHMWPE 1031.03 815.47 815.51 0.0 0.01
    13.30 Al/UHMWPE 1109.26 837.90 882.61 5.1 9.87
    14.40 Al/UHMWPE 1015.25 736.59 721.04 2.2 4.36
    15.60 Al/UHMWPE 1071.68 725.44 736.71 1.5 3.04
    17.40 Al/UHMWPE 988.45 517.27 500.82 3.3 6.68
    下载: 导出CSV
  • [1] ZAERA R, SANCHEZ-GALVEZ V. Analytical modeling of normal and oblique ballistic impact on ceramic/metal lightweight armors [J]. International Journal of Impact Engineering, 1998, 21(3): 133–148. DOI: 10.1016/s0734-743x(97)00035-3.
    [2] FELI S, AALEAGHA M E A, AHMADI Z. A new analytical model of normal penetration of projectiles into the light-weight ceramic-metal targe [J]. International Journal of Impact Engineering, 2010, 37(5): 561–567. DOI: 10.1016/j.ijimpeng.2009.10.006.
    [3] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C]//AIP Conference Proceedings. Colorado, 1994: 981–984. DOI: 10.1063/1.46199.
    [4] BURGER D, FARIA A R D, ALMEIDA S F M D, et al. Ballistic impact simulation of an armour-piercing projectile on hybrid ceramic/fiber reinforced composite armours [J]. International Journal of Impact Engineering, 2012, 43(5): 63–77. DOI: 10.1016/j.ijimpeng.2011.12.001.
    [5] ZUKAS J A, SCHEFFLER D R. Impact effects in multilayered plates [J]. International Journal of Solids and Structures, 2001, 38(19): 3321–3328. DOI: 10.1016/S0020-7683(00)00260-2.
    [6] CORRAN R S J, SHADBOLT P J, RUIZ C. Impact loading of plates: an experimental investigation [J]. International Journal of Impact Engineering, 1983, 1(1): 3–22. DOI: 10.1016/0734-743X(83)90010-6.
    [7] DEY S, BORVIK T, HOPPERSTAD O S, et al. On the influence of constitutive relation in projectile impact of steel plates [J]. International Journal of Impact Engineering, 2007, 34(3): 464–486. DOI: 10.1016/j.ijimpeng.2005.10.003.
    [8] 马小敏, 李世强, 李鑫, 等. 编织Kevlar/Epoxy复合材料层合板在冲击荷载下的动态响应 [J]. 爆炸与冲击, 2016, 36(2): 170–176. DOI: 10.11883/1001-1455(2016)02-0170-07.

    MA X M, LI S Q, LI X, et al. Dynamic response of woven Kevlar/Epoxy composite laminate under impact loading [J]. Explosion and Shock Waves, 2016, 36(2): 170–176. DOI: 10.11883/1001-1455(2016)02-0170-07.
    [9] 李茂, 朱锡, 侯海量, 等. 冲击波和高速破片联合作用下固支方板毁伤效应数值模拟 [J]. 国防科技大学学报, 2017, 39(6): 64–70. DOI: 10.11887/j.cn.201706011.

    LI M, ZHU X, HOU H L, et al. Numerical simulation of the damage effects of clamped square plate subjected to the impact of blast wave and fragments [J]. Journal of National University of Defense Technology, 2017, 39(6): 64–70. DOI: 10.11887/j.cn.201706011.
    [10] 秦溶蔓, 朱波, 乔琨, 等. 陶瓷/纤维复合材料层间混杂结构对装甲板抗侵彻性能的影响 [J]. 材料导报, 2020, 34(18): 183–187. DOI: 10.11896/cldb.20030208.

    QIN R M, ZHU B, QIAO K, et al. Effect of hybrid structure of ceramic/fiber composite material on penetration resistance of armor plate [J]. Materials Reports, 2020, 34(18): 183–187. DOI: 10.11896/cldb.20030208.
    [11] 谢文波, 张伟, 姜雄文. 钢球斜侵彻碳纤维复合材料板的实验研究 [J]. 爆炸与冲击, 2018, 38(3): 647–653. DOI: 10.11883/bzycj-2016-0289.

    XIE W B, ZHANG W, JIANG X W. Oblique on CFRPs by steel sphere [J]. Explosion and Shock Waves, 2018, 38(3): 647–653. DOI: 10.11883/bzycj-2016-0289.
    [12] 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制 [J]. 复合材料学报, 2021, 38(5): 1455–1467. DOI: 10.13801/j.cnki.fhclxb.20200722.003.

    HE Y M, JIAO Y N, ZHOU Q, et al. Ballistic performance of ultrahigh molecular weight polyethylene fiber/waterborne polyurethane composite laminate against mild-steel core projectile and its damage mechanism [J]. Acta Materiae Compos-itae Sinica, 2021, 38(5): 1455–1467. DOI: 10.13801/j.cnki.fhclxb.20200722.003.
    [13] 王敏, 文鹤鸣. 碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟 [J]. 爆炸与冲击, 2022, 42(3): 033102. DOI: 10.11883/bzycj-2021-0050.

    WANG M, WEN H M. Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading [J]. Explosion and Shock Waves, 2022, 42(3): 033102. DOI: 10.11883/bzycj-2021-0050.
    [14] 刘铁, 史洪刚, 程新, 等. 钨合金帽型试样的绝热剪切带数值模拟研究 [J]. 兵器材料科学与工程, 2008,31(2): 75–79. DOI: 10.3969/j.issn.1004-244X.2008.02.020.

    LIU T, SHI H G, CHENG X, et al. Numerical simulation for adiabatic shear bands of WHA in hat specimen [J]. Ordnance Materials Science and Engineering, 2008,31(2): 75–79. DOI: 10.3969/j.issn.1004-244X.2008.02.020.
    [15] 王雷, 李玉龙, 索涛, 等. 航空常用铝合金动态拉伸力学性能探究 [J]. 航空材料学报, 2013, 33(4): 71–77. DOI: 10.3969/j.issn.1005-5053.2013.4.013.

    WANG L, LI Y L, SUO T, et al. Mechanical behavior of commonly used aeronautical aluminum alloys under dynamic tension [J]. Journal of Aeronautical Materials, 2013, 33(4): 71–77. DOI: 10.3969/j.issn.1005-5053.2013.4.013.
    [16] 张帝. FRP-PU加固粘土砖砌体墙抗动载性能研究 [D]. 北京: 北京理工大学, 2021: 17–38.

    ZHANG D. Research on the performance of FRP-PU reinforced clay brick masonry wall against dynamic loads [D]. Beijing: Beijing Institute of Technology, 2021: 17–28.
    [17] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834–855. DOI: 10.1177/002199838702100904.
    [18] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates [J]. Journal of Composite Materials, 1999, 33(24): 2248–2280. DOI: 10.1177/002199839903302402.
    [19] HAN Q , LI H , CHEN X , et al. Impact resistant basalt fiber-reinforced aluminum laminate with Janus helical structures inspired by lobster and mantis shrimp [J]. Composite structures, 2022, 291(7): 115551. DOI: 10.1016/j.compstruct.2022.115551.
    [20] 胡年明, 陈长海, 朱锡, 等. 陶瓷与芳纶层合板叠层结构抗侵彻性能试验研究 [J]. 兵工学报, 2018, 39(5): 976–982. DOI: 10.3969/j.issn.1000-1093.2018.05.018.

    HU N M, CHEN C H, ZHU X, et al. Experimental research on anti-penetration performance of stacked structure of ceramic /Kevlar composite laminates [J]. Acta Armamentarii, 2018, 39(5): 976–982. DOI: 10.3969/j.issn.1000-1093.2018.05.018.
    [21] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates [J]. Composite Structures, 2003, 61: 161–173. DOI: 10.1016/S0263-8223(03)00029-1.
    [22] CUNNIFF P M. An analysis of the system effects of woven fabrics under ballistic impact [J]. Textile Research Journal, 1992, 13(5): 385–395. DOI: 10.1177/004051759206200902.
    [23] 解亚宸, 黄广炎, 张宏, 等. UHMWPE纤维二维织物抗弹道冲击性能 [J]. 兵工学报, 2022, 43(09): 2152–2163. DOI: 10.12382/bgxb.2021.0648.

    XIE Y C, HUANG G Y, ZHANG H, et al. Ballistic performance of two-dimensional UHMWPE fabric [J]. Acta Armamentarii, 2022, 43(9): 2152–2163. DOI: 10.12382/bgxb.2021.0648.
    [24] LONG H N, LASSIG T R, RYAN S, et al. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact [J]. Composites Part: A Applied Science & Manufacturing, 2016, 84: 224–235. DOI: 10.1016/j.compositesa.2016.01.014.
    [25] 余毅磊, 王晓东, 任文科, 等. UHMWPE背板铺层角度对陶瓷复合靶板抗弹性的影响 [J]. 北京理工大学学报, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.

    YU Y L, WANG X D, REN W K, et al. Effect of UHMWPE back plate layering angle on the anti-elasticity of ceramic composite target plate [J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 612–619. DOI: 10.15918/j.tbit1001-0645.2021.209.
    [26] 张友敏. SiC陶瓷/UHMWPE复合装甲弹道性能研究 [D]. 长沙: 湖南大学, 2018: 12–32.

    ZHANG Y M. Investigation on the ballistic behavior of the SiC ceramic/UHMWPE composite armor [D]. Changsha: Hunan University, 2018: 12–32.
    [27] 赵晓旭, 徐豫新, 田非, 等. 钢/纤维复合板对破片弹速侵彻吸能机制及分析方法 [J]. 兵工学报, 2014, 35(S2): 309–315. DOI: CNKI:SUN:BIGO.0.2014-S2-058.

    ZHAO X X, XU Y X, TIAN F, et al. The energy absorption mechanism and analysis method of steel/fiber composite plate against fragment impact at projectile velocity [J]. Acta Armamentarii, 2014, 35(S2): 309–315. DOI: CNKI:SUN:BIGO.0.2014-S2-058.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  53
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-11-08
  • 网络出版日期:  2023-11-15
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回