Experiment study of cascades explosive implosion magnetic flux generator
-
摘要: 柱面内爆磁通量压缩发生器是利用炸药内爆压缩其内部磁通量至轴线附近小体积内从而实现超高磁场,传统的单级装置因受到金属套筒内爆失稳等影响性能指标受限。开展了多级内爆磁压缩技术研究,突破多项关键技术,包括研制特殊结构的密绕螺线管、脉冲功率源及大电流放电开关等,具备在直径135 mm套筒空间内实现20 T以上初始磁场产生能力,并建立了动态磁光测量系统。利用磁流体力学编码SSS-MHD开展多级装置设计,计算显示,设计的多级装置能够将约42%的初始磁通量压缩至轴线附近直径7 mm的空间内。最终研制成功多级内爆磁压缩装置CJ-150,在亚立方厘米以上空间实现轴向峰值磁场强度906 T,数据不确定度5.35%。10余发动态考核实验显示,CJ-150装置工作稳定,能够满足物理实验需要。利用经实验验证的磁流体模型计算显示,CJ-150具备1000 T以上超强磁场产生能力,能够对大尺寸样品实现500 GPa以上的准等熵加载。Abstract: The explosive implosion magnetic flux generator (EIMFG) could realize ultrahigh magnetic field by using explosive implosion to compress and cumulate inner magnetic flux into a smaller volume near axis. The EIMFG was designed by using magneto-hydrodynamics code of SSS-MHD and simulation shown that around 42% of initial magnetic flux would be finally compressed and cumulated into a volume of 7 mm in diameter near axis. The initial magnetic field system including specific solenoid, power source and large current switch was built up and had the ability of over 20 T of initial magnetic field producing in a cylinder space of 135 mm in diameter. A magnetic optical measurement system was also built up and suitable to dynamic detonation environment. Finally, a 20 kg TNT explosive sale EIMFG setup named CJ-150 was built up and axial maximum magnetic field up to 906 T was recorded using Faraday optical method. The original magneto-optical signal was clear with high quality, and uncertainty of maximum magnetic field data was 5.35%. The magnetic loading by Lorenz force was proved isentropic and uniform around from the measurement results of photonic Doppler velocimeter (PDV) probes which were set inside the sample tube. The CJ-150 setup is proved working stably and suitable to be used in physics experiment. Analysis show that CJ-150 could produce over 1000 T of ultrahigh magnetic field in over 10-1 cm3 volume and realize over 500 GPa of ultrahigh isentropic compression on large size sample.
-
-
[1] SAKHAROV A D, LUDAYEV R Z, SMIRNOV E N, et al. Magnitnaya kumulatsia [J]. Dokl. Akad. Nauk SSSR, 1965, 196(1): 65–68. [2] FOWLER C M, GARN W B, CAIRD R S. Production of very high magnetic fields by implosion [J]. Journal of Applied Physics, 1960, 31(3): 588–594. DOI: 10.1063/1.1735633. [3] HAWKE R S, DUERRE D E, HUEBEL J G, et al. Electrical properties of Al2O3 under isentropic compression up to 500 GPa (5 Mbar) [J]. Journal of Applied Physics, 1978, 49(6): 3298–3303. DOI: 10.1063/1.325281. [4] HERLACH F, KNOEPFEL H. Megagauss fields generated in explosive‐driven flux compression devices [J]. Review of Scientific Instruments, 1965, 36(8): 1088–1095. DOI: 10.1063/1.1719809. [5] PAVLOVSKII A I. Reproducible generation of multimegagauss magnetic fields [C] // Megagauss Physics and Technology. TURCHI P J. New York: Plenum Press 1980: 627–639. [6] BYKOV A I, DOLOTENKO M I, KOLOKOLCHIKOV N P, et al. VNIIEF achievements on ultra-high magnetic fields generation [J]. Physica B: Condensed Matter, 2001, 294/295: 574–578. DOI: 10.1016/S0921-4526(00)00723-7. [7] CLARK R G. The dirac experiments–results and challenges [C] // Proceeding of the Ⅷth International Conference on Megagauss Magnetic Field Generation and Related Topics. HANS J. Tallahassee, Florida: Schneider-Muntau, 1998: 12–22. [8] LINDEMUTH I R, EKDAHL C A, FOWLER C M. US/Russian collaboration in high-energy-density physics using high-explosive pulsed power: ultrahigh current experiments, ultrahigh magnetic field applications, and progress toward controlled thermonuclear fusion [J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1357–1371. DOI: 10.1109/27.650905. [9] 谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701. [10] ZHOU Z Y, GU Z W, TONG Y J, et al. A compact explosive-driven flux compression generator for reproducibly generating multimegagauss fields [J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3279–3283. DOI: 10.1109/TPS.2018.2794761. [11] 孙承纬, 陆禹, 赵继波, 等. 电磁驱动高能量密度动力学实验的一维磁流体力学多物理场数值模拟平台: SSS-MHD [J]. 爆炸与冲击, 2023, 43(10): 104201. DOI: 10.11883/bzycj-2023-0127.SUN C W, LU Y, ZHAO J B, et al. SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments [J]. Explosion and Shock Waves, 2023, 43(10): 104201. DOI: 10.11883/bzycj-2023-0127. [12] MADER C L. Numerical modeling of explosives and propellants [M]. 3rd ed. Boca Raton: CRC Press, 2008. [13] 孙承纬. 一维冲击波和爆轰波计算程序SSS [J]. 计算物理, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.SUN C W. One dimensional shock wave and detonation wave calculation program SSS [J]. Chinese Journal of Computational Physics, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002. [14] BURGESS T J. Electrical resistivity model of metals: SAND86-1093C [R]. USA: Sandia National Labs, 1986. [15] 李茂生, 陈栋泉. 高温高压下材料的本构模型 [J]. 高压物理学报, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004.LI M S, CHEN D Q. A constitutive model for materials under high-temperature and pressure [J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004. [16] ZHANG J, ZHAO X C, CHEN G H, et al. Dual-channel Faraday rotation measurement for pulsed magnetic field [J]. Review of Scientific Instruments, 2021, 92(10): 105004. DOI: 10.1063/5.0058980. [17] GENG H Y, WU Q, MARQUÉS M, et al. Thermodynamic anomalies and three distinct liquid-liquid transitions in warm dense liquid hydrogen [J]. Physical Review B, 2019, 100(13): 134109. DOI: 10.1103/PhysRevB.100.134109. 期刊类型引用(1)
1. 柯渊. 基于音频混音技术的影视声音制作方法. 电声技术. 2025(04): 96-98 . 百度学术
其他类型引用(0)
-
推荐阅读
基于简易冲击分解模型的爆轰驱动硅橡胶数值模拟及实验解读
刘军 等, 爆炸与冲击, 2025
Cl-20基高爆速压装炸药的落锤冲击响应特性
徐风 等, 爆炸与冲击, 2025
多级柱面炸药内爆磁通量压缩技术研究
谷卓伟 等, 爆炸与冲击, 2024
不同点火方式下hmx基pbx炸药反应演化过程的特征分析
楼建锋 等, 爆炸与冲击, 2024
Dnan基熔铸炸药的动态力学行为及点火特性
赵东 等, 高压物理学报, 2025
Hmx含量对pbt基推进剂撞击感度和非冲击点火反应特性的影响
杨年 等, 高压物理学报, 2024
爆轰加载下tatb基钝感炸药的冲击-卸载-再冲击实验装置设计与模拟
樊辉 等, 高压物理学报, 2024
Recent advances in targeting the undruggable proteins: from drug discovery to clinical trials
Xie, Xin et al., SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023
Simulation, verification, and prediction of thermal response of bridgewire in electro-explosive device
MEASUREMENT, 2025
Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening
NI Hui et al., EXPLOSION AND SHOCK WAVES, 2024