Research progress on impact energy release characteristics of reactive disordered alloy and its application in kill elements
-
摘要: 无序合金是一种新型金属材料,突破了传统的合金设计理念,表现出不同于传统合金的优异力学性能、冲击释能及剪切自锐特性,在高温、高压、高应变率等环境具有良好的应用前景。分析活性无序合金的冲击释能特性对其应用于军事领域有着重要的指导作用,能为弹药战斗部的设计提供参考。本文阐述了静动态力学实验中典型无序合金的反应释能现象;总结了撞击速度与活性无序合金释能超压、释能效率之间的关系;讨论了撞击速度、材料破碎程度及靶标特征等因素对活性无序合金释能机理的影响;归纳了制备工艺及元素类型对活性无序合金释能特性的调控效果。进一步,本文梳理了活性无序合金在破片、穿甲弹芯和聚能装药战斗部三个方向的应用研究进展,分析了活性无序合金毁伤元的侵彻行为和作用机制。最后,针对活性无序合金材料未来的发展趋势和需求进行了展望。Abstract: Disordered alloy is a new kind of reactive material, which breaks through the design concept of traditional alloy and exhibits excellent mechanical properties, impact energy release characteristics and adiabatic shear sensitivity, showing good application prospects in high temperature, high pressure, high strain rates and other application environments. Analyzing the impact energy release characteristics of reactive disordered alloy has an important guiding role for its development in the military field and can provide the basis for the design and application of warheads for ammunition. In this paper, the impact energy release characteristics of reactive disordered alloys are introduced from four aspects, including the energy release phenomenon of chemical reaction, the energy release law induced by impacting, the energy release mechanism and the regulation of the energy release behaviors. The chemical reaction showing energy release phenomenon in static and dynamic mechanical experiments is described. The relationship between impact velocities and the energy release overpressures or the efficiency of energy release of reactive disordered alloys is obtained. The effect between impact velocities and crushing degree of the reactive disordered alloys or characteristics of the target on the energy release mechanism is discussed. At the same time, the regulation effects of preparation process and the kinds of element on energy release effect of disordered alloy materials are summarized. This kind of alloy own good impact energy release characteristics, presented an ideal energetic structural material. Furthermore, the research progress of reactive disordered alloys applied to warheads in military area is summarized from three directions, including fragment, armor-piercing core and shaped charge liner. The macro and micro penetration behavior and mechanism of warheads of reactive disordered alloys are analyzed under high-speed loading conditions. Via the design of the structure, the good penetration and damage performance benefit from the self-sharpening and energy release characteristics of the material. Finally, the further development trend and demands of reactive disordered alloy are prospected.
-
内爆炸毁伤是打击水面舰船重要的毁伤方式,战斗部内爆炸产生的压力载荷作用于舰船舱壁结构,产生侧舷、横舱壁等结构变形或破坏,导致船舱进水,严重时可造成整船沉没。由于内爆炸载荷是一种多波峰叠加的复杂压力波,瞬态压力峰值高,载荷作用时间长,对船体结构的毁伤破坏比自由环境下的爆炸毁伤更剧烈、更复杂,因此,内爆炸载荷作用下结构的失效破坏成为了国内外学者研究的热点。
对于爆炸载荷作用下板结构的变形失效,已开展了大量的实验研究和理论分析。Nurick等[1]、Wen[2]开展了周边固支低碳钢圆板受均匀载荷作用的变形实验研究。Jacob等[3]、Gupta等[4]开展了固支圆板在空爆载荷作用下的边界撕裂破坏实验研究。Geretto等[5]开展了均布载荷作用下固支方板的失效模式实验。Teeling-Smith等[6]利用有限元分析软件开展了均布脉冲载荷作用下软钢薄圆板的变形撕裂研究,得到了板厚度、不同边界支撑等特性对板变形的影响。朱锡等[7]、陈长海等[8]开展了爆炸载荷作用下固支方板的变形实验研究。崔高领等[9]进行了均布冲击载荷对金属方板的仿真计算研究。这些研究均在空爆或半密闭环境下开展,而对于密闭环境下板结构变形与载荷关系的研究较少,如姚熊亮等[10]开展的舰船舱内爆炸载荷特征与板架毁伤规律仿真研究,侯海量等[11]开展的舱内爆炸载荷及舱室板架结构的失效模式研究。与空爆压力载荷相比,密闭环境下的压力载荷是一种多波峰叠加、准静态压力作用时间长的复杂压力波,受压后的板结构在产生塑性变形的过程中还存在极限变形[12]现象,即结构变形达到一定值后不会持续增大,后续阶段的压力载荷对结构变形不产生影响。这种产生板结构极限变形的压力载荷称为有效压力载荷或饱和压力载荷,研究有效压力载荷随时间的变化规律,掌握其与板结构的耦合作用关系,成为研究内爆炸结构变形破坏的关键。郑成等[13]、孔祥韶等[14]通过仿真计算方法,研究了密闭方形结构内方薄板的变形特性,并提出了方板变形预报模型和内爆炸压力载荷等效模型。而通过内爆炸实验方法研究板结构的变形特征与压力载荷关系,目前鲜有报道。
本文中基于双圆筒爆炸装置,开展TNT和某温压装药对铝质、钢质薄圆板的内爆炸实验,获取薄圆板的变形和压力载荷数据,分析薄圆板的破坏模式和压力载荷特点,并基于相同变形下作用载荷相等原理,确定薄圆板极限变形的有效比冲量和作用时间,提出圆薄板变形的预报模型并进行验证,以期为内爆炸结构毁伤研究提供技术参考。
1. 实验方法
1.1 实验装置及样品
实验双圆筒装置如图1所示,由两段圆筒、薄平板、前/后端盖、密封圈组成,在圆筒端部设有法兰盘。薄平板放置于两个圆筒端部的法兰盘之间,由螺钉将两个圆筒、薄平板密封连接,形成两个密闭圆筒腔室。圆筒长1 670 mm,内径800 mm,壁厚12 mm。为达到薄平板与法兰盘连接接近固支条件,在法兰盘的端面上铣出几组细浅同心圆,并对圆筒内端面角作倒圆角处理,减小其对薄板变形的影响。薄平板为2 mm厚的铝板和1 mm 厚的Q235钢板,在靠近边缘的同心圆周上,设置与圆筒法兰盘孔对应的圆孔。
实验装药为柱形TNT和某温压装药,长径比1∶1,其中TNT密度为1.58 g/cm3,质量分别为20和40 g;某温压装药(主要组成为HMX和Al粉)密度为1.84 g/cm3,质量分别为20、30、40、50、60、70和80 g。实验时,将药柱垂直悬挂于圆筒的几何中心,由电雷管起爆1 g C4扩爆药柱,引爆装药。
1.2 测点布局及测试系统
在爆炸圆筒一端圆形盖板的中心轴线上,按照从圆心到边缘的顺序均布4个压力测量点P1、P2、P3、P4,如图1(c)所示。测点布设的压力传感器为PCB公司113B24型壁面压力传感器,量程为0~6.9 MPa。传感器敏感面距盖板内表面约0.8 mm。安装完成后,在传感器头部敏感面与安装孔形成的凹槽内涂满油脂,使油脂表面与盖板表面平齐,其目的是延长爆炸热传递到传感器敏感面的时间,减小热冲击对压力载荷测量的影响。
基于爆心对称的两个刚性壁面上,冲击波在静止刚性壁面的反射压力与运动刚性壁面的反射压力差异不大[15],可近似认为实验获取的盖板测点压力载荷等于圆薄板对称位置的压力载荷。
2. 实验结果及分析
2.1 圆板变形结果及分析
本文中共进行了10个工况实验,其中工况1~3为铝质薄圆板的变形破坏实验,工况4是为了补充获取工况2开展的40 g TNT装药在爆炸室的压力载荷数据实验,工况5~10为钢质薄圆板的变形破坏实验。典型铝质、钢质薄圆板实验后的状态如图2所示,各实验工况薄圆板的变形挠度及破坏情况如表1所示,其中WY代表某温压装药。
表 1 各实验工况圆板的变形结果Table 1. Deformation results of circular plate under various experimental conditions实验工况 平板材质 平板厚度/mm 装药类型 装药质量/g 圆板挠度/mm 变形破坏结果 1 铝 2 TNT 20 71.5 夹持边、中心塑性大变形 2 铝 2 TNT 40 夹持边被切断 3 铝 2 WY 20 93.0 夹持边间断性裂缝 4 钢 1 TNT 40 85.5 夹持边、中心塑性大变形 5 钢 1 WY 30 86.0 夹持边、中心塑性大变形 6 钢 1 WY 40 100.5 夹持边、中心塑性大变形 7 钢 1 WY 50 111.0 夹持边、中心塑性大变形 8 钢 1 WY 60 122.0 夹持边、中心塑性大变形 9 钢 1 WY 70 134.0 夹持边、中心塑性大变形 10 钢 1 WY 80 147.0 夹持边、中心塑性大变形 由图2可以看出,工况2的铝质薄圆板从夹持边界剪切断裂,切下圆板飞向邻室,落于后端盖底部,扭缩成团,如图2(b)所示,其剪切断面边缘有微小弯曲和大小不均匀的小尖刺。除工况2外,其他工况的铝质、钢质薄板均产生了四周顶起的锥形隆起结构,在薄板的夹持边界和中心区域产生了显著塑性大变形,在中心区域形成了比周边结构更陡峭的锥尖,且锥角随装药质量的增大而减小,更尖锐。在工况3的铝板夹持边界还产生了两段不连续的断裂裂缝,如图2(c)中红色圈内标注线及左侧放大图所示,从裂缝断面可以看出,夹持边界有显著的板厚拉伸减薄现象,断面边缘不规则,有长度不等的细长尖刺。工况5~10的装药为某温压药,钢质薄板产生了大变形,变形挠度随装药质量的增加而增大。
从上述圆板变形结果可以看出,在圆板夹持边界和中心产生了塑性大变形,在夹持边界还出现了局部撕裂和剪切断裂现象,主要原因是在圆板夹持边界和中心产生了应力极值点。参考方形薄板的应力响应分析[16],在爆炸压力载荷作用下,固支夹持边界处形成弯曲转角,产生拉伸应变,当弯曲应变小于边界极限应变时,夹持边界产生大弯角,形成的运动塑性铰环从夹持边界向圆板中心移动收缩。在塑性铰环内部,圆板作刚体平行移动[17],塑性铰环通过的外部则形成了曲面板,并按照锥形分布速度运动。当后续压力载荷作用下,圆板变形不持续增大时,塑性铰环收缩到圆板中心,形成锥尖;当弯曲应变接近板的极限应变时,在夹持边界产生局部的撕裂;当超过板的极限应变后,夹持边界产生横向剪切断裂。
圆板的实验结果表明,在内爆炸载荷作用下,薄圆板产生了3种破坏模式:塑性大变形、拉伸撕裂、横向剪切。该结果与文献[14]所得到的空爆压力载荷作用下梁、圆板的变形破坏模式一致。
2.2 圆板上的压力载荷及分析
工况7的4个测点测量的压力载荷曲线和积分处理后的比冲量曲线如图3所示。从图3(a)的压力载荷曲线可以看出,4个压力测点的压力载荷到达时间差小于0.12 μs,P1、P2、P3测点最大压力峰值基本一致,角隅测点P4的最大峰值约为其他测点最大峰值的2倍,4个测点的压力载荷随时间的变化趋势基本一致。从图3(b)的比冲量曲线可以看出:在3 ms内,4个测点的比冲量大小与比冲量增长量基本一致,虽然P4测点的最大压力峰值最高,但是比冲量与其他测点基本相当;3 ms后,除P3测点外,其他测点的比冲量增长量基本一致。观察P3测点的压力载荷曲线发现,3 ms后,其压力值比其他测点略小,原因可能是受到爆炸热冲击对压力传感器性能的影响,由于压电型传感器具有热释电效应,当传感器的隔热防护作用不够时,爆炸热通过热传导作用到传感器的敏感元件上,输出热冲击干扰信号,并且传感器的预紧结构受热膨胀,预紧力减小,导致传感器的灵敏度变小,输出的压电信号也减小。
其他实验工况下4个测点的载荷特性与工况7基本类似,除角隅位置压力载荷的最大峰值是其他测点的2倍外,其他时刻4个测点的压力载荷大致相等,比冲量也基本一致。因此可由一个测点的压力载荷反映整个圆板面上的压力载荷。各工况圆板中心测点P1的压力载荷曲线如图4所示。
从图4所示的压力载荷曲线可以看出,薄圆板受到多波峰叠加的复杂压力载荷作用。在初始阶段,压力波以显著的一大一小波峰组合周期性衰减出现,变化周期为2.8~3.5 ms(药量越大周期越短),每一周期内的波峰值均比前一周期对应的波峰值小,3个周期后,两个波峰逐渐融合,形成了压力波动逐渐减小的准静态压力。工况2的压力曲线在7.9 ms内,波形特征与其他工况的变化规律类似,7.9 ms后压力逐渐减小,形成约12 ms的周期性振荡波。工况5~10的压力载荷最大峰值和匀化形成的准静态压力均随着装药质量的增大而增大,但振荡周期随着装药质量的增大而缩短,从3.5 ms逐渐缩短到2.8 ms。
将上述各工况圆板中心测点P1的压力载荷积分处理,得到比冲量时间曲线,如图5所示。
除工况2外,其他工况的比冲量时间曲线变化规律类似,在约0.35 ms内,比冲量曲线急剧上升,随后呈波浪式增长,并且随着时间的延长,波浪振幅逐渐减小,逐渐趋于线性增长。这主要是由于爆炸室内压力波趋于匀化,形成了压力波动较小的准静态压力所致。比冲量波动周期等于压力载荷波动周期,并且随着装药质量的增加,比冲量也随之增大。
工况2与工况4的装药类型和装药质量相等,比冲量值在7.9 ms内基本一致,7.9 ms后,工况2的比冲量增长率相对减缓,形成了周期约12 ms的新波动。结合工况2薄圆板的破坏结果,可得到在7.9 ms时刻,铝板受到的比冲量为1.720 MPa·ms,铝板夹持边界的弯曲应变超过板的极限应变,产生了瞬时剪切断裂现象。工况3的铝板夹持边界产生了两小段撕裂破坏,其破坏时刻的弯曲应变接近铝板的极限应变,受到的比冲量应小于1.720 MPa·ms。工况5~10的钢质薄圆板,在压力载荷作用时间内,夹持边界产生的弯曲应变均小于材料的极限应变。
基于圆板上比冲量时间曲线呈线性增长的特点,其增长量由圆筒内形成的准静态压力产生,因此,除去比冲量曲线前期0.35 ms内的急剧上升段,选取0.35~20.0 ms的比冲量数据作线性拟合处理,得到比冲量平均增长率,该增长率近似等于圆筒内的准静态压力。由于急剧上升段的比冲量主要由压力载荷的最大峰值脉冲积分产生,脉冲持续时间短,可以近似认为圆板受到的比冲量瞬时增长到
Δi ,然后线性增长,因此,圆板上的比冲量i可表示为:i=pt+Δi (1) 式中:p为圆筒内准静态压力,
t 为压力载荷作用时间,Δi 为比冲量快速增长量。对各工况的比冲量数据进行处理,可得到各工况的准静态压力p和比冲量快速增长量
Δi 。表2为工况5~10的准静态压力p和Δi 以及3、5和10 ms时的比冲量实验值和依据式(1)得到的计算值。表 2 工况5~10的 p和Δi及典型时刻模型比冲量的计算值和实验值Table 2. p and Δiof conditions 5−10 and the calculated and experimental specific impulses at typical times 实验
工况压力/
MPa比冲量快速增长量/
(MPa·ms)3 ms 时的比冲量/(MPa·ms) 5 ms 时的比冲量/(MPa·ms) 10 ms 时的比冲量/(MPa·ms) 计算值 实验值 计算值 实验值 计算值 实验值 5 0.199 0.290 0.861 0.758 1.236 1.264 2.172 2.217 6 0.235 0.332 1.056 0.970 1.512 1.409 2.653 2.568 7 0.294 0.393 1.237 1.200 1.769 1.701 3.097 3.244 8 0.322 0.471 1.408 1.289 2.010 1.856 3.515 3.520 9 0.342 0.518 1.571 1.424 2.240 2.123 3.912 3.927 10 0.377 0.566 1.727 1.648 2.460 2.446 4.291 4.342 对比表2中的比冲量计算结果和实验结果可知,3、5和10 ms时段内的计算结果与实验结果的偏差分别为13.6%、8.3%和4.5%。可以看出:随着载荷作用时间的加长,模型计算结果与实验结果的偏差减小。这表明比冲量计算模型可以近似预估圆板受到的比冲量,且载荷作用时间越长,计算结果越接近实验结果。
Barker等[18]提出了一种内爆炸准静态压力p计算模型:
p=A(m/V)γ (2) 式中:
m 为炸药装药质量,V 为内爆炸空间体积,A 、γ 为相关因子。将上述工况5~10的准静态压力p的实验结果、实验装药、圆筒体积,按照式(2)的幂指数模型进行拟合,可以得到该装药的准静态压力计算模型,其中:系数
A =1.865,γ =0.67。依据该计算模型得到工况5~10的准静态压力p为0.200、0.243、0.282、0.319、0.353、0.386 MPa,与表2中压力的实验结果进行比对可知,偏差小于4.7%。上述快速增长比冲量
Δi ,主要由压力载荷曲线中起始段最大峰值的压力脉冲积分得到,该脉冲的最大峰值、脉宽与装药质量及爆心距相关,因此,按照比冲量与比对距离成幂指数关系:Δi=K(3√m/r)δ (3) 式中:K、δ为因数,r为内爆炸爆心距。将表2中工况5~10的
Δi 实验值、装药质量、爆心距按照式(3)的幂指数模型进行拟合处理,得到K=2.051,δ=2.11。依据该模型计算工况5~10的Δi 分别为0.299、0.372、0.441、0.506、0.569、0.630 MPa·ms,与表2中Δi 的实验结果比对可知,偏差小于3.3%,表明该模型能够描述冲量曲线中快速增长段的比冲量Δi 。将式(2)、式(3)代入式(1),则式(1)转化为:
i=A(m/V)γt+K(3√m/r)δ (4) 2.3 钢质圆板变形的有效载荷分析
Zhao等[12]提出了平板变形的极限响应现象,即在平板变形达到一定值后不会持续增加,后续的作用载荷对平板的变形不产生影响,存在平板极限变形的有效载荷及作用时间。对于薄板结构,一般遵循冲量毁伤准则,即对薄板的破坏主要由冲量载荷产生。在空爆环境下,冲量值可通过冲击波压力正压时间内的比冲量与板面积的乘积得到,而在内爆炸环境下,由于压力载荷为多波峰叠加并逐渐匀化为准静态压力的复杂波,正压时间长,无法确定载荷作用时间,因此不能依据获取的压力载荷数据直接得到有效比冲量和作用时间。
上述内爆炸压力载荷未完全匀化前的压力波,可近似看作一种瞬态升压后又缓慢衰减的单波峰压力波(忽略内部压力波动),与外爆炸压力波波形特点相似。因此,可基于相同变形下冲量载荷相等原理,认为空爆条件下圆板受到的冲量载荷等于内爆炸条件下圆板极限变形所受到的有效冲量,再依据有效冲量,得到载荷作用时间。
在空爆条件下,Jacob等[19]提出了钢质圆板的变形挠度计算模型:
δ0H=0.425ϕc (5) 式中:δ0为圆板变形挠度;H为圆板厚度;
ϕc 为无量纲数,其表达式为:ϕc=IπRH2√ρσ0 (6) 式中:
I 为圆板受到的冲量,R 为圆板半径,ρ 为平板材料的密度,σ0 为平板材料的静态屈服应力。空爆作用下圆板上的冲量
I 等于内爆炸作用下圆板上的有效冲量I0 ,因此,式(5)、式(6)变形后,得到内爆炸圆板上的有效冲量:I0 =δ0H×πRH2√ρσ00.425=πδ0RH√ρσ00.425 (7) 从图3中圆板各测点的比冲量曲线可以得到,圆板面上各测点的比冲量基本相等,随时间加长比冲量的增长率也基本一致,表明圆板面上各位置的瞬态比冲量基本一致,随时间的增长比冲量增量也基本相当,特别是装药质量越大,一致性越好。因此,圆板上任意一点的有效冲量可通过测量点的有效比冲量与圆板面积之积得到:
I0=i0s (8) 式中:
i0 为圆板测量点的有效比冲量,s 为圆板面积。将工况5~10中钢质圆板的变形挠度代入式(7),并结合式(8),得到钢质圆板的有效冲量
I0 、有效比冲量i0 ,如表3所示,其中钢板密度为7 800 kg/m3,σ0 =235 MPa。表 3 工况5~10钢质圆板的有效冲量和有效比冲量Table 3. Effective impulses and effective specific impulses of steel circular plates under conditions 5−10实验工况 圆板挠度/mm 有效冲量/(N⋅s) 有效比冲量/(MPa⋅ms) 修正有效冲量/(N⋅s) 修正有效比冲量/(MPa⋅ms) 作用时间/ms 5 86.0 344 0.656 389 0.777 2.93 6 100.5 402 0.767 456 0.912 2.76 7 111.0 444 0.847 505 1.009 2.55 8 122.0 476 0.908 542 1.084 2.43 9 134.0 536 1.023 612 1.224 2.36 10 147.0 588 1.122 673 1.345 2.26 式(6)中忽略了爆炸动态加载过程中材料应变率的影响,在瞬态强压力载荷作用下,平板结构的动力响应与材料的应变率显著相关,因此,需要考虑材料应变率变化的影响。Cowper-Symonds提出了材料动态屈服应力与静态屈服应力的关系模型[19]:
σdσ0=1+(v0δ3√2˙ε0R2)1/q (9) 式中:
σd 为平板材料的动态屈服应力,v0 为平板的瞬态速度,˙ε0 、q 为与材料相关的常数。按照动量守恒,平板上的比冲量i 与v0 的关系为i=ρδv0 ,代入式(9)得到:σdσ0=1+(i3√2ρ˙ε0R2)1/q (10) 对于Q235低碳钢材料,
˙ε0 一般取值[19]为40.4 s−1,q 取值为5。将表3中的有效比冲量i0 代入式(10),得到对应的σd ,再将σd 代入式(7),得到修正后的有效冲量Im 和有效比冲量im 。依据修正后的有效比冲量
im ,在各工况比冲量时间曲线上,由im 得到对应有效比冲量作用时间t ,如表3所示。由表3可以看出:随着圆板变形挠度的增大,有效比冲量im 随之增大,有效载荷作用时间t 随着圆板变形挠度的增大而缩短。将有效比冲量
im 和作用时间t 进行数据拟合处理,得到有效比冲量im 与作用时间t 的关系式:t=75.64i−0.49m (11) 因此,当确定了圆板材料、尺度和极限变形量后,可以通过式(7)和式(10)得到有效比冲量,再依据式(4)和式(11)预估圆板极限变形下的装药质量。
依据上述方法,预估工况5~10钢质圆板极限变形下的装药量,分别为26、35、44、52、63和75 g,与实验装药量比较可知,偏差小于13.3%,表明该模型可以预估内爆炸作用下圆板的变形情况。
3. 结 论
通过双圆筒型装置内薄圆板的爆炸实验,研究了圆板的变形破坏模式和比冲量载荷变化规律,并基于相同变形下的冲量载荷相等原理,确定了内爆炸圆板极限变形下的有效比冲量和作用时间,提出了薄圆板变形的预报模型,并进行了验证,结果表明:
(1)在内爆炸压力载荷作用下,圆板的夹持边界和中心区域是应力集中区,圆板产生了塑性大变形、拉伸撕裂和横向剪切3种破坏模式。
(2)圆板上的内爆炸压力载荷为多波峰的复杂压力波,初始阶段比冲量陡峭增长,随后由波浪式增长逐渐匀化为线性增长,增长率近似等于装药在爆炸室内形成的准静态压力。
(3)在实验圆筒装置内,当1 mm厚钢质圆板产生86~147 mm的变形挠度时,有效比冲量在0.777~1.345 MPa·ms范围,有效载荷作用时间在2.26~2.93 ms范围。通过验证,由圆板变形预估模型得到的装药质量与实验装药质量偏差小于13.3%。
-
图 63 射流侵彻后靶板的EBSD细观分析:(a)变形区IPF图;(a)中区域b的(b1、b2)IPF图和对应的KAM图;(a)中区域c的(c1, c2) IPF图和对应的KAM图[113]
Figure 63. Microstructural analysis of the residual jet after penetration via EBSD: (a) IPF map of deformation zone; (b1, b2) IPF map and corresponding KAM map of region b in (a); (c1, c2) IPF map and corresponding KAM map of region c in (a)[113]
图 64 再结晶区的高倍BSE-SEM图像(a)及线扫描分析(b):在(a)中显示的两个晶界上进行线扫描,其对应的位置在(b)中用虚线标记[113]
Figure 64. High-magnification BSE-SEM images (a) and line scan analysis (b) of the recrystallization region: a line scan was conducted across two grain boundaries as displayed in (a), the corresponding locations of which are labeled with dashed lines in (b)[113]
图 65 CoCrNi残余射流侵彻后的TEM组织分析:(a) CoCrNi残余射流的TEM照片,其中的白色虚线标记了沿晶界的纳米尺寸沉淀;(b) 降水(图(a)中的红色矩形区域)的HAADF-TEM照片;(c~e) 图(b)中对应的Co、Cr、Ni元素分布;(f) 降水SAED图(区域I(b)),(g) 图(b)中Ⅰ,Ⅱ,Ⅲ,Ⅳ区域Co,Cr,Ni元素含量[113]
Figure 65. Microstructural analysis of CoCrNi residual jet after penetration by TEM: (a) TEM images of CoCrNi residual jet, where the white dashed line marks the nanosized precipitations along grain boundaries; (b) HAADF-TEM image of the precipitation (red rectangle region in (a)); (c–e) Corresponding element distributions of Co, Cr, and Ni in (b); (f) SAED pattern ofprecipitation (region I in (b)); (g) Element content of Co, Cr, and Ni in region I, II, III, IV in (b)[113]
-
[1] 汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177–351.WANG W H. The nature and properties of amorphous matter [J]. Progress in Physics, 2013, 33(5): 177–351. [2] FALK M L, KANGER J S. 类固体非晶态材料的变形与失效 [J]. 力学进展, 2021, 51(2): 406–426. DOI: 10.6052/1000-0992-21-034.FALK M L, KANGER J S. Deformation and failure of amorphous, solidlike materials [J]. Advances in Mechanics, 2021, 51(2): 406–426. DOI: 10.6052/1000-0992-21-034. [3] 乔吉超, 张浪渟, 童钰, 等. 基于微观结构非均匀性的非晶合金力学行为 [J]. 力学进展, 2022, 529(1): 117–152. DOI: 10.6052/1000-0992-21-038.QIAO J C, ZHANG L T, TONG Y, et al. Mechancial properties of amorphous alloys: in the framework of the microstructure heterogeneity [J]. Advances in Mechanics, 2022, 529(1): 117–152. DOI: 10.6052/1000-0992-21-038. [4] LIU D, YU Q, KABRA S, et al. Exceptional fracture toughness of CrCoNi-based medium-and high-entropy alloys at 20 Kelvin [J]. Science, 2022, 378(6623): 978–983. DOI: 10.1126/science.abp8070. [5] 卜叶强, 王宏涛. 多主元合金中的化学短程有序 [J]. 力学进展, 2021, 51(4): 915–919. DOI: 10.6052/1000-0992-21-027.BU Y Q, WANG H T. Short-range order in multicomponent alloys [J]. Advances in Mechanics, 2021, 51(4): 915–919. DOI: 10.6052/1000-0992-21-027. [6] 陈曦, 杜成鑫, 程春, 等. Zr基非晶合金材料的冲击释能特性 [J]. 兵器材料科学与工程, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002.CHEN X, DU C X, CHENG C, et al. Impact energy releasing characteristics of Zr-based amorphous alloy [J]. Ordnance Material Science and Engineering, 2018, 41(6): 44–49. DOI: 10.14024/j.cnki.1004-244x.20180717.002. [7] 张周然. HfZrTiTa x高熵合金含能结构材料的组织结构与力学性能研究 [D]. 长沙: 国防科技大学, 2017: 80–84. DOI: 10.27052/d.cnki.gzjgu.2017.000221.ZHANG Z R. Microstructure and mechanical properties of HfZrTiTa x high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 80–84. DOI: 10.27052/d.cnki.gzjgu.2017.000221. [8] 李继承, 陈小伟. 块体金属玻璃及其复合材料的压缩剪切特性和侵彻/穿甲“自锐”行为 [J]. 力学进展, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056.LI J C, CHEN X W. Compressive-shear behavior and self-sharpening of bulk metallic glasses and their composite materials [J]. Advances in Mechanics, 2011, 41(5): 480–518. DOI: 10.6052/1000-0992-2011-5-lxjzJ2011-056. [9] LIU X F, TIAN Z L, ZHANG X F, et al. “Self-sharpening”tungsten high-entropy alloy [J]. Acta Materialia, 2020, 186: 257–266. DOI: 10.1016/j.actamat.2020.01.005. [10] LIU T W, LI T, DAI L H. Near-equiatomic µ phase in self-sharpening tungsten-based high-entropy alloy [J]. Metals, 2022, 12(7): 1130. DOI: 10.3390/met12071130. [11] 张玉令, 施冬梅, 张云峰, 等. W骨架/Zr基非晶合金复合材料破片侵彻能力与后效研究 [J]. 爆炸与冲击, 2021, 41(5): 053301. DOI: 10.11883/bzycj-2020-0063.ZHANG Y L, SHI D M, ZHANG Y F, et al. Investigation of penetration ability and aftereffect of Zr-based metallic glass reinforced porous W matrix composite fragments [J]. Explosion and Shock Waves, 2021, 41(5): 053301. DOI: 10.11883/bzycj-2020-0063. [12] HAN J L, CHEN X, DU Z H, et al. Application of W/Zr amorphous alloy for shaped charge liner [J]. Materials Research Express, 2019, 6(11): 115209. DOI: 10.1088/2053-1591/ab47d7. [13] CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/s0734-743x(99)00176-1. [14] SCHROERS J, JOHNSON W L. Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system [J]. Applied Physics Letters, 2004, 84(18): 3666–3668. DOI: 10.1063/1.1738945. [15] 胡宏伟, 宋浦, 邓国强, 等. 温压炸药的特性及发展现状 [J]. 力学进展, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021.HU H W, SONG P, DENG G Q, et al. Characteristics of thermobaric explosives and their advances [J]. Advances in Mechanics, 2022, 52(1): 53–78. DOI: 10.6052/1000-0992-21-021. [16] INOUE A, ZHANG T, MASUMOTO T. Preparation of bulky amorphous Zr-Al-Co-Ni-Cu alloys by copper mold casting and their thermal and mechanical properties [J]. Materials Transactions, JIM, 1995, 36(3): 391–398. DOI: 10.2320/matertrans1989.36.391. [17] INOUE A, AMIYA K, KATSUYA A, et al. Mechanical properties and thermal stability of Ti- and Al-based amorphous wires prepared by a melt extraction method [J]. Materials Transactions, JIM, 1995, 36(7): 858–865. DOI: 10.2320/matertrans1989.36.858. [18] YOKOYAMA Y, INOUE A. Solidification condition of bulk glassy Zr60Al10Ni10Cu15Pd5 alloy by unidirectional arc melting [J]. Materials Transactions, JIM, 1995, 36(11): 1398–1402. DOI: 10.2320/matertrans1989.36.1398. [19] LIU C T, HEATHERLY L, HORTON J A, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys [J]. Metallurgical and Materials Transactions A, 1998, 29(7): 1811–1820. DOI: 10.1007/s11661-998-0004-6. [20] GILBERT C J, AGER III J W, SCHROEDER V, et al. Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass [J]. Applied Physics Letters, 1999, 74(25): 3809–3811. DOI: 10.1063/1.124187. [21] 潘念侨. Zr基非晶合金材料动态本构关系及其释能效应研究 [D]. 南京: 南京理工大学, 2016: 36–54. DOI: 10.7666/d.Y3046370.PAN N Q. Dynamic Zr based amorphous alloy material constitutive relation and release energy effect reserch [D]. Nanjing: Nanjing University of Science and Technology, 2016: 36–54. DOI: 10.7666/d.Y3046370. [22] ZHANG Z R, ZHANG H, TANG Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Materials & Design, 2017, 133: 435–443. DOI: 10.1016/j.matdes.2017.08.022. [23] AMES R. Vented chamber calorimetry for impact-initiated energetic materials [C]// Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 279. DOI: 10.2514/6.2005-279. [24] AMES R G. Energy release characteristics of impact-initiated energetic materials [J]. MRS Online Proceedings Library, 2005, 896(1): 308. DOI: 10.1557/PROC-0896-H03-08. [25] 汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展 [J]. 爆炸与冲击, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.WANG D W, REN K R, JIANG Z R, et al. Shock-induced energy release behaviors of reactive materials [J]. Explosion and Shock Waves, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337. [26] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004. [27] GILBERT C J, AGER III J W, SCHROEDER V, et al. Mechanism for light emission during fracture of a Zr-Ti-Cu-Ni-Be bulk metallic glass: temperature measurements in air and nitrogen [J]. MRS Online Proceedings Library, 1998, 554(1): 191–196. DOI: 10.1557/PROC-554-191. [28] WEI H Y, YOO C S. Kinetics of small single particle combustion of zirconium alloy [J]. Journal of Applied Physics, 2012, 111(2): 023506. DOI: 10.1063/1.3677789. [29] WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302. [30] 尚春明, 施冬梅, 李文钊, 等. Zr基非晶合金燃烧热测试方法 [J]. 兵器装备工程学报, 2019, 40(8): 193–197. DOI: 10.11809/bqzbgcxb2019.08.038.SHANG C M, SHI D M, LI W Z, et al. Study on combustion heat method of Zr-based amorphous alloy [J]. Journal of Ordnance Equipment Engineering, 2019, 40(8): 193–197. DOI: 10.11809/bqzbgcxb2019.08.038. [31] TU J, QIAO L, SHAN Y, et al. Study on the impact-induced energy release characteristics of Zr68.5Cu12Ni12Al7.5 amorphous alloy [J]. Materials, 2021, 14(6): 1447. DOI: 10.3390/ma14061447. [32] 尚春明, 施冬梅, 张云峰, 等. Zr基非晶合金的燃烧释能特性 [J]. 含能材料, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.SHANG C M, SHI D M, ZHANG Y F, et al. Combustion and energy release characteristics of Zr-based amorphous alloys [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219. [33] 侯先苇, 熊玮, 陈海华, 等. 两种典型高熵合金冲击释能及毁伤特性研究 [J]. 力学学报, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327.HOU X W, XIONG W, CHEN H H, et al. Impact energy release and damage characteristics of two high-entropy alloys [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528–2540. DOI: 10.6052/0459-1879-21-327. [34] 张云峰, 刘国庆, 李晨, 等. 新型亚稳态合金材料冲击释能特性 [J]. 含能材料, 2019, 27(8): 692–697. DOI: 10.11943/CJEM2018170.ZHANG Y F, LIU G Q, LI C, et al. Shock energy release characteristics of novel metastable alloy materials [J]. Chinese Journal of Energetic Materials, 2019, 27(8): 692–697. DOI: 10.11943/CJEM2018170. [35] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials & Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107. [36] CHEN X, DU C X, CHENG C, et al. Impact-induced chemical reaction behavior of ZrTiNiCuBe bulk metallic glass fragments impacting on thin plates [J]. Materiali in Tehnologije, 2018, 52(6): 737–743. DOI: 10.17222/mit.2018.089. [37] 张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114. [38] JI C, HE Y, WANG C T, et al. Effect of dynamic fragmentation on the reaction characteristics of a Zr-based metallic glass [J]. Journal of Non-Crystalline Solids, 2019, 515: 149–156. DOI: 10.1016/j.jnoncrysol.2019.04.022. [39] GRADY D E. Fragment size distributions from the dynamic fragmentation of brittle solids [J]. International Journal of Impact Engineering, 2008, 35(12): 1557–1562. DOI: 10.1016/j.ijimpeng.2008.07.042. [40] REN K R, LIU H Y, CHEN R, et al. Compression properties and impact energy release characteristics of TiZrNbV high-entropy alloy [J]. Materials Science and Engineering: A, 2021, 827: 142074. DOI: 10.1016/j.msea.2021.142074. [41] LOU H B, WANG X D, XU F, et al. 73 mm-diameter bulk metallic glass rod by copper mould casting [J]. Applied Physics Letters, 2011, 99(5): 051910. DOI: 10.1063/1.3621862. [42] INOUE A, ZHANG T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method [J]. Materials Transactions, JIM, 1996, 37(2): 185–187. DOI: 10.2320/matertrans1989.37.185. [43] DONG W B, ZHANG H F, CAI J, et al. Enhanced plasticity in a Zr-based bulk metallic glass containing nanocrystalline precipitates [J]. Journal of Alloys and Compounds, 2006, 425(1/2): L1–L4. DOI: 10.1016/j.jallcom.2006.01.021. [44] 黄彩敏. 金属型含能结构材料的组织调控与力、热特性研究 [D]. 长沙: 国防科技大学, 2020. DOI: 10.27052/d.cnki.gzjgu.2020.000084.HUANG C M. Research on prepartion, mechanical and thermal characteristics of metallic energetic structural materials [D]. Changsha: National University of Defense Technology, 2020. DOI: 10.27052/d.cnki.gzjgu.2020.000084. [45] HUANG C M, BAI S X, LI S, et al. Effect of in-situ crystalline phases on the mechanical properties and energy release behaviors of Zr55Ni5Al10Cu30 bulk metallic glasses [J]. Intermetallics, 2020, 119: 106720. DOI: 10.1016/j.intermet.2020.106720. [46] HUANG H L, WU Y, HE J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Advanced Materials, 2017, 29(30): 1701678. DOI: 10.1002/adma.201701678. [47] SUH D W, RYU J H, JOO M S, et al. Medium-alloy manganese-rich transformation-induced plasticity steels [J]. Metallurgical and Materials Transactions A, 2013, 44(1): 286–293. DOI: 10.1007/s11661-012-1402-3. [48] LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off [J]. Nature, 2016, 534(7606): 227–230. DOI: 10.1038/nature17981. [49] LI X, CHEN L Q, ZHAO Y, et al. Influence of manganese content on ε-/ α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels [J]. Materials & Design, 2018, 142: 190–202. DOI: 10.1016/j.matdes.2018.01.026. [50] 王睿鑫. NbZrTiTa高熵合金的组织结构演变及结构释能特性研究 [D]. 长沙: 国防科技大学, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.001416.WANG R X. Microstructure evolution and energetic structural properties of NbZrTiTa high-entropy alloy [D]. Changsha: National University of Defense Technology, 2018. DOI: 10.27052/d.cnki.gzjgu.2018.001416. [51] TANG Y, WANG R X, XIAO B, et al. A review on the dynamic-mechanical behaviors of high-entropy alloys [J]. Progress in Materials Science, 2023, 135: 101090. DOI: 10.1016/j.pmatsci.2023.101090. [52] 黄劲松, 刘咏, 陈仕奇, 等. 锆基非晶合金的研究进展与应用 [J]. 中国有色金属学报, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001.HUANG J S, LIU Y, CHEN S Q, et al. Progress and application of Zr-based amorphous alloys [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(6): 1321–1332. DOI: 10.3321/j.issn:1004-0609.2003.06.001. [53] 马卫锋, 寇宏超, 李金山, 等. W纤维增强Zr基非晶复合材料的界面研究现状 [J]. 材料导报, 2006, 20(4): 64–66. DOI: 10.3321/j.issn:1005-023X.2006.04.018.MA W F, KOU H C, LI J S, et al. The present status of interface study of W fiber reinforced Zr-based amorphous matrix composite [J]. Materials Reports, 2006, 20(4): 64–66. DOI: 10.3321/j.issn:1005-023X.2006.04.018. [54] INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Materialia, 2000, 48(1): 279–306. DOI: 10.1016/s1359-6454(99)00300-6. [55] QIU K Q, WANG A M, ZHANG H F, et al. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite [J]. Intermetallics, 2002, 10(11/12): 1283–1288. DOI: 10.1016/s0966-9795(02)00136-x. [56] 武晓峰, 邱克强, 张海峰, 等. SiC颗粒对Zr55Al10Ni5Cu30非晶形成能力和热稳定性的影响 [J]. 金属学报, 2003, 39(4): 414–418. DOI: 10.3321/j.issn:0412-1961.2003.04.016.WU X F, QIU K Q, ZHANG H F, et al. Effect of SiCp on the glass forming ability and thermal stability of Zr55Al10Ni5Cu30 bulk metallic glass [J]. Acta Metallurgica Sinica, 2003, 39(4): 414–418. DOI: 10.3321/j.issn:0412-1961.2003.04.016. [57] XU Y K, XU J. Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites [J]. Scripta Materialia, 2003, 49(9): 843–848. DOI: 10.1016/s1359-6462(03)00447-0. [58] 寇生中, 郑宝超, 李娜, 等. 不同元素掺杂对Zr基非晶形成能力及力学性能的影响 [J]. 金属功能材料, 2011, 18(2): 1–5. DOI: 10.13228/j.boyuan.issn1005-8192.2011.02.009.KOU S Z, ZHENG B C, LI N, et al. Effects of additional different element on glass forming ability and mechanical properties of bulk Zr-based amorphous alloys [J]. Metallic Functional Materials, 2011, 18(2): 1–5. DOI: 10.13228/j.boyuan.issn1005-8192.2011.02.009. [59] 张云峰, 罗兴柏, 施冬梅, 等. W骨架/Zr基非晶合金复合材料细观胞元重构 [J]. 稀有金属材料与工程, 2019, 48(1): 137–142.ZHANG Y F, LUO X B, SHI D M, et al. Reconstruction of meso-cells of Zr-based metallic glass reinforced porous W matrix composite [J]. Rare Metal Materials and Engineering, 2019, 48(1): 137–142. [60] 张云峰, 罗兴柏, 刘国庆, 等. W骨架/Zr基非晶合金复合材料破片的冲击释能特性 [J]. 稀有金属材料与工程, 2020, 49(8): 2549–2556.ZHANG Y F, LUO X B, LIU G Q, et al. Shock-induced reaction characteristics of porous W/Zr-based metallic glass composite fragments [J]. Rare Metal Materials and Engineering, 2020, 49(8): 2549–2556. [61] MA Y S, ZHOU L, ZHANG K C, et al. Effects of cerium doping on the mechanical properties and energy-releasing behavior of high-entropy alloys [J]. Materials, 2022, 15(20): 7332. DOI: 10.3390/ma15207332. [62] MA Y S, HE J Y, ZHOU L, et al. Mechanical properties and impact energy release characteristics of Al0.5NbZrTi1.5Ta0.8Ce0.85 high-entropy alloy [J]. Materials Research Express, 2022, 9(11): 116510. DOI: 10.1088/2053-1591/ac9f04. [63] 魏祥赛. Ni-M系高熵合金含能结构材料设计与力学性能 [D]. 大连: 大连理工大学, 2022: 16−73. DOI: 10.26991/d.cnki.gdllu.2022.000524.WEI X S. Design and mechanical properties of Ni-M high entropy alloy energetic structural materials [D]. Dalian: Dalian University of Technology, 2022: 16−73. DOI: 10.26991/d.cnki.gdllu.2022.000524. [64] 高人奎. TiZrHf系高熵合金的冲击动力学特性及反应释能评价 [D]. 沈阳: 沈阳理工大学, 2022: 51−72. DOI: 10.27323/d.cnki.gsgyc.2022.000486.GAO R K. Impact dynamics properties and reaction energy release evaluation of TiZrHf based high entropy alloys [D]. Shenyang: Shenyang Ligong University, 2022: 51−72. DOI: 10.27323/d.cnki.gsgyc.2022.000486. [65] CHEN C, GAO R K, GUO K, et al. Quantitative determination of impact release energy for TiZrHfX0.3 multicomponent materials in vacuum environment [J]. International Communications in Heat and Mass Transfer, 2022, 133: 105958. DOI: 10.1016/j.icheatmasstransfer.2022.105958. [66] TANG W Q, ZHANG K, CHEN T Y, et al. Microstructural evolution and energetic characteristics of TiZrHfTa0.7W0.3 high-entropy alloy under high strain rates and its application in high-velocity penetration [J]. Journal of Materials Science & Technology, 2023, 132: 144–153. DOI: 10.1016/j.jmst.2022.05.043. [67] MONTGOMERY JR H E. Reactive fragment: US3961576 [P]. 1976-06-08. [68] TRUITT R M, NIELSON D B, ASHCROFT B N, et al. Weapons and weapon components incorporating reactive materials: US11512058 [P]. 2006-08-29. [69] WILLIAM J F. Reactive fragrant warhead for enhanced neutralization of mortar, rocket, and missile threats: ONR-SBIR, N04-903 [R]. 2005. [70] REN S Y, ZHANG Q M, WU Q, et al. Influence of impact-induced reaction characteristics of reactive composites on hypervelocity impact resistance [J]. Materials & Design, 2020, 192: 108722. DOI: 10.1016/j.matdes.2020.108722. [71] 郭磊, 王传婷, 何勇, 等. Zr55Cu30Ni5Al10活性破片对间隔防护结构破坏特性研究 [J]. 航天器环境工程, 2020, 37(6): 582–588. DOI: 10.12126/see.2020.06.008.GUO L, WANG C T, HE Y, et al. The failure characteristics of spacing protective structures impacted by Zr55Cu30Ni5Al10 active fragments [J]. Spacecraft Environment Engineering, 2020, 37(6): 582–588. DOI: 10.12126/see.2020.06.008. [72] 陈海华, 张先锋, 熊玮, 等. WFeNiMo高熵合金动态力学行为及侵彻性能研究 [J]. 力学学报, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.CHEN H H, ZHANG X F, XIONG W, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166. [73] 杨林, 于述贤, 范群波. Zr77.1Cu13Ni9.9非晶合金破片侵彻LY12铝合金及TC4钛合金靶板毁伤后效及机理对比研究 [J]. 北京理工大学学报, 2023, 43(4): 417–428. DOI: 10.15918/j.tbit1001-0645.2022.092.YANG L, YU S X, FAN Q B. Damage effect and mechanism of Zr77.1Cu13Ni9.9 bulk metallic glasses fragment penetrating LY12 aluminum alloy and TC4 titanium alloy target plate [J]. Transactions of Beijing Institute of Technology, 2023, 43(4): 417–428. DOI: 10.15918/j.tbit1001-0645.2022.092. [74] LEHR H F, WOLLMAN E, KOERBER G. Experiments with jacketed rods of high fineness ratio [J]. International Journal of Impact Engineering, 1995, 17(4/5/6): 517–526. DOI: 10.1016/0734-743x(95)99876-s. [75] BACKMAN M E. Terminal ballistics: AD-A021 833 [R]. China Lake, California: Naval Weapons Center, 1976. [76] CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007. [77] RONG G, HUANG D W, YANG M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers [J]. Theoretical and Applied Fracture Mechanics, 2012, 58(1): 21–27. DOI: 10.1016/j.tafmec.2012.02.003. [78] 张明星, 黄晓霞. 钨合金穿甲弹芯材料强化技术及材料技术国外研究分析 [J]. 四川兵工学报, 2015, 36(12): 114–117. DOI: 10.11809/scbgxb2015.12.028.ZHANG M X, HUANG X X. Foreign research and analysis on strengthening technology and material technology of tungsten alloy piercing projectile [J]. Journal of Ordnance Equipment Engineering, 2015, 36(12): 114–117. DOI: 10.11809/scbgxb2015.12.028. [79] 荣光, 黄德武. 钨纤维复合材料穿甲弹芯侵彻时的自锐现象 [J]. 爆炸与冲击, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05.RONG G, HUANG D W. Self-sharpening phenomena of tungsten fiber composite material penetrators during penetration [J]. Explosion and Shock Waves, 2009, 29(4): 351–355. DOI: 10.11883/1001-1455(2009)04-0351-05. [80] 杜忠华, 杜成鑫, 朱正旺, 等. 钨丝/锆基非晶复合材料长杆体弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(5): 1308–1313.DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of pole penetrator prepared from WF/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(5): 1308–1313. [81] 陈小伟, 李继承, 张方举, 等. 钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究 [J]. 爆炸与冲击, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.CHEN X W, LI J C, ZHANG F J, et al. Experimental research on the penetration of tungsten-fiber/metallic glass-matrix composite material penetrator into steel target [J]. Explosion and Shock Waves, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09. [82] 杜忠华, 杜成鑫, 朱正旺, 等. 分段结构的钨丝/锆基非晶复合材料弹芯穿甲实验研究 [J]. 稀有金属材料与工程, 2016, 45(9): 2359–2365.DU Z H, DU C X, ZHU Z W, et al. An experimental study on perforation behavior of segmented Wf/Zr-based bulk metallic glass matrix composite [J]. Rare Metal Materials and Engineering, 2016, 45(9): 2359–2365. [83] 杜成鑫, 杜忠华, 朱正旺. 着靶速度和钨丝直径对钨丝/锆基非晶复合材料弹芯侵彻性能的影响 [J]. 稀有金属材料与工程, 2017, 46(6): 1632–1637.DU C X, DU Z H, ZHU Z W. Effect of impact velocity and diameter of tungsten fiber on penetration ability of Wf/Zr-based metallic glass composite penetrator [J]. Rare Metal Materials and Engineering, 2017, 46(6): 1632–1637. [84] 杜成鑫, 杜忠华, 朱正旺. 钨丝直径对锆基复合非晶材料穿甲性能的影响 [J]. 稀有金属材料与工程, 2017, 46(4): 1080–1085.DU C X, DU Z H, ZHU Z W. Effect of tungsten fiber diameter on penetration ability of Zr-based metallic glass composites [J]. Rare Metal Materials and Engineering, 2017, 46(4): 1080–1085. [85] JIANG F, CHEN G, WANG Z H, et al. Mechanical properties of tungsten fiber reinforced (Zr41.2Ti13.8Cu12.5Ni10Be22.5)100- x Nb x bulk metallic glass composites [J]. Rare Metal Materials and Engineering, 2011, 40(2): 206–208. DOI: 10.1016/S1875-5372(11)60016-7. [86] 杜成鑫. Wf/Zr基非晶复合材料杆弹准细观侵彻机理及优化设计 [D]. 南京: 南京理工大学, 2020: 39−62. DOI: 10.27241/d.cnki.gnjgu.2020.000070.DU C X. Research on penetration mechanism and optimization design of Wf/Zr-based bulk metallic glass matrix composite rod [D]. Nanjing: Nanjing University of Science & Technology, 2020: 39−62. DOI: 10.27241/d.cnki.gnjgu.2020.000070. [87] SORENSEN B R, KIMSEY K D, SILSBY G F, et al. High velocity penetration of steel targets [J]. International Journal of Impact Engineering, 1991, 11(1): 107–119. DOI: 10.1016/0734-743X(91)90034-D. [88] 林琨富, 张先锋, 陈海华, 等. Hf基非晶合金夹芯结构长杆弹的侵彻行为 [J]. 爆炸与冲击, 2021, 41(2): 023301. DOI: 10.11883/bzycj-2020-0181.LIN K F, ZHANG X F, CHEN H H, et al. Penetration behaviors of Hf-based amorphous alloy jacketed rods [J]. Explosion and Shock Waves, 2021, 41(2): 023301. DOI: 10.11883/bzycj-2020-0181. [89] HOU X W, ZHANG X F, XIONG W, et al. Study on energy release characteristics and penetration effects to concrete targets of Hf-based amorphous alloys [J]. Journal of Non-Crystalline Solids, 2022, 581: 121438. DOI: 10.1016/j.jnoncrysol.2022.121438. [90] HOU X W, ZHANG X F, LIU C, et al. Effects of annealing temperatures on mechanical behavior and penetration characteristics of FeNiCoCr high-entropy alloys [J]. Metals, 2022, 12(11): 1885. DOI: 10.3390/met12111885. [91] 陈海华, 张先锋, 赵文杰, 等. W25Fe25Ni25Mo25高熵合金高速侵彻细观结构演化特性 [J]. 力学学报, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128.CHEN H H, ZHANG X F, ZHAO W J, et al. Effect of microstructure on flow behavior during penetration of W25Fe25Ni25Mo25 high-entropy alloy projectile [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128. [92] 赵腾, 罗虹, 贾万明, 等. 药型罩材料技术基本要素探讨 [J]. 兵器材料科学与工程, 2007, 30(5): 77–82. DOI: 10.3969/j.issn.1004-244X.2007.05.022.ZHAO T, LUO H, JIA W M, et al. Discussion on the basic elements of shaped charge liner material [J]. Ordnance Material Science and Engineering, 2007, 30(5): 77–82. DOI: 10.3969/j.issn.1004-244X.2007.05.022. [93] 张雪朋. 活性射流作用钢靶侵彻爆炸联合毁伤效应研究 [D]. 北京: 北京理工大学, 2016: 1−6.ZHANG X P. Research on penetration and blast combined damage effects of reactive material jet against steel target [D]. Beijing: Beijing Institute of Technology, 2016: 1−6. [94] 张雪朋, 肖建光, 余庆波, 等. 活性药型罩聚能装药破甲后效超压特性 [J]. 兵工学报, 2016, 37(8): 1388–1394. DOI: 10.3969/j.issn.1000-1093.2016.08.007.ZHANG X P, XIAO J G, YU Q B, et al. Armor penetration aftereffect overpressure produced by reactive material liner shaped charge [J]. Acta Armamentarii, 2016, 37(8): 1388–1394. DOI: 10.3969/j.issn.1000-1093.2016.08.007. [95] WALTERS W P, KECSKES L J, PRITCHETT J E. Investigation of a bulk metallic glass as a shaped charge liner material [R]. Aberdeen Proving Ground: Army Research Laboratory, 2006. [96] SHI J, HUANG Z X, ZU X D, et al. Experimental and numerical investigation of jet performance based on Johnson-Cook model of liner material [J]. International Journal of Impact Engineering, 2022, 170: 104343. DOI: 10.1016/j.ijimpeng.2022.104343. [97] SHI J, HUANG Z X, ZU X D, et al. Experimental investigation of Zr-Based amorphous alloy as a shaped charge liner [J]. Propellants, Explosives, Pyrotechnics, 2022, 47(11): e202200063. DOI: 10.1002/prep.202200063. [98] CUI P, GAO X B, XU J Q, et al. Simulation and experimental study on jet velocity of Zr-based amorphous alloy liner [J]. Metals, 2022, 12(6): 978. DOI: 10.3390/met12060978. [99] 周秉文, 孟凡迪, 张全孝, 等. 铜基非晶合金的动态性能及杆式射流仿真研究 [J]. 兵器材料科学与工程, 2020, 43(6): 1–5. DOI: 10.14024/j.cnki.1004-244x.20200612.001.ZHOU B W, MENG F D, ZHANG Q X, et al. Dynamic properties and rod jet simulation of copper-based bulk metallic glasses [J]. Ordnance Material Science and Engineering, 2020, 43(6): 1–5. DOI: 10.14024/j.cnki.1004-244x.20200612.001. [100] 鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性 [J]. 力学学报, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.YAN A M, QIAO Y, DAI L H. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274. [101] 郑哲敏. 聚能射流的稳定性问题 [M]// 郑哲敏. 郑哲敏文集. 北京: 科学出版社, 2004: 12. [102] 郑哲敏. 关于射流侵彻的几个问题 [J]. 兵工学报, 1980(1): 13–22.ZHENG Z M. Several problems on jet penetration [J]. Acta Armamentarii, 1980(1): 13–22. [103] CHOU P C, CARLEONE J. The stability of shaped-charge jets [J]. Journal of Applied Physics, 1977, 48(10): 4187–4195. DOI: 10.1063/1.323456. [104] CUI P, SHI D M, XU J Q, et al. Investigation of explosion simulation on jet forming of ZrCuNiAlAg amorphous alloy liner with eccentric sub-hemisphere structure [J]. IOP Conference Series: Materials Science and Engineering, 2020, 964: 012020. DOI: 10.1088/1757-899x/964/1/012020. [105] CUI P, WANG D S, SHI D M, et al. Investigation of penetration performance of Zr-based amorphous alloy liner compared with copper [J]. Materials, 2020, 13(4): 912. DOI: 10.3390/ma13040912. [106] CUI P, SHI D M, ZHANG Y L, et al. Numerical simulation and experimental study on jet forming and penetration performance of Zr-based amorphous alloy liner [J]. Engineering Letters, 2021, 29(1): 151–157. [107] CUI P, SHI D M, XU J Q, et al. Numerical simulation on jet forming and penetration performance of several amorphous energetic alloy liner with typical structures [J]. Journal of Physics: Conference Series, 2021, 1948: 012186. DOI: 10.1088/1742-6596/1948/1/012186. [108] 芦永进, 梁增友, 邓德志, 等. 铜基非晶合金双层药型罩射流形成及侵彻性能 [J]. 火炮发射与控制学报, 2022, 43(1): 14–20, 28. DOI: 10.19323/j.issn.1673-6524.2022.01.003.LU Y J, LIANG Z Y, DENG D Z, et al. Jet formation and penetration performance of a Cu-based amorphous alloy double-layer charge liner [J]. Journal of Gun Launch & Control, 2022, 43(1): 14–20, 28. DOI: 10.19323/j.issn.1673-6524.2022.01.003. [109] HAN J L, CHEN X, DU Z H, et al. Design and penetration of a new W-particle/Zr-based amorphous alloy composite liner [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 364. DOI: 10.1007/s40430-020-02359-6. [110] LÜ J X, ZHANG J L, SHEK C. Corrosion of glassy (Ni8Nb5)99.5Sb0.5 alloy and stability of passive film [J]. Rare Metal Materials and Engineering, 2013, 42(3): 447–451. DOI: 10.1016/S1875-5372(13)60045-4. [111] ZHAO Z Y, LIU J X, GUO W Q, et al. Effect of Zn and Ni added in W-Cu alloy on penetration performance and penetration mechanism of shaped charge liner [J]. International Journal of Refractory Metals and Hard Materials, 2016, 54: 90–97. DOI: 10.1016/j.ijrmhm.2015.07.022. [112] BAI X, LIU J X, LI S K, et al. Effect of interaction mechanism between jet and target on penetration performance of shaped charge liner [J]. Materials Science and Engineering: A, 2012, 553: 142–148. DOI: 10.1016/j.msea.2012.06.003. [113] CHEN J, LIU T W, CAO F H, et al. Deformation behavior and microstructure evolution of CoCrNi medium-entropy alloy shaped charge liners [J]. Metals, 2022, 12(5): 811. DOI: 10.3390/met12050811. [114] GUO W Q, LIU J X, XIAO Y, et al. Comparison of penetration performance and penetration mechanism of W-Cu shaped charge liner against three kinds of target: pure copper, carbon steel and Ti-6Al-4V alloy [J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 147–153. DOI: 10.1016/j.ijrmhm.2016.07.015. [115] ZHANG S C, JIANG Z H, LI H B, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Materials Characterization, 2018, 137: 244–255. DOI: 10.1016/j.matchar.2018.01.040. 期刊类型引用(4)
1. 张学瑞,周涛. 密闭空间中复合装药的能量释放特性. 爆炸与冲击. 2024(06): 41-49 . 本站查看
2. 赵豫熙,袁浩天,王须民,张之凡. 水下接触爆炸作用下金属/CFRP复合层合板的防护性能. 高压物理学报. 2024(06): 177-190 . 百度学术
3. 赵伟成,翟红波,毛伯永,杨峰. 两装药同时起爆时金属靶板的动态响应. 爆炸与冲击. 2023(12): 3-13 . 本站查看
4. 李荣,万家平,蔡灵,谷家扬,刘涛. 基于CONWEP法空爆载荷下船体结构动态响应研究. 江苏船舶. 2022(04): 1-5 . 百度学术
其他类型引用(2)
-