环境温度对TATB/RDX传爆药起爆及驱动性能的影响

郭刘伟 翟召辉 韩秀凤 王伟 何雨 桂毓林

郭刘伟, 翟召辉, 韩秀凤, 王伟, 何雨, 桂毓林. 环境温度对TATB/RDX传爆药起爆及驱动性能的影响[J]. 爆炸与冲击, 2024, 44(1): 012301. doi: 10.11883/bzycj-2023-0192
引用本文: 郭刘伟, 翟召辉, 韩秀凤, 王伟, 何雨, 桂毓林. 环境温度对TATB/RDX传爆药起爆及驱动性能的影响[J]. 爆炸与冲击, 2024, 44(1): 012301. doi: 10.11883/bzycj-2023-0192
GUO Liuwei, ZHAI Zhaohui, HAN Xiufeng, WANG Wei, HE Yu, GUI Yulin. Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive[J]. Explosion And Shock Waves, 2024, 44(1): 012301. doi: 10.11883/bzycj-2023-0192
Citation: GUO Liuwei, ZHAI Zhaohui, HAN Xiufeng, WANG Wei, HE Yu, GUI Yulin. Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive[J]. Explosion And Shock Waves, 2024, 44(1): 012301. doi: 10.11883/bzycj-2023-0192

环境温度对TATB/RDX传爆药起爆及驱动性能的影响

doi: 10.11883/bzycj-2023-0192
基金项目: 国家自然科学基金(12002326);中国工程物理研究院创新基金(CX20200001)
详细信息
    作者简介:

    郭刘伟(1983- ),男,博士,副研究员,guoliuwei1@163.com

    通讯作者:

    何 雨(1987- ),男,博士,副研究员,hexiaoyu@mail.ustc.edu.cn

  • 中图分类号: O381; TJ55

Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive

  • 摘要: 为了获得环境温度对TATB/RDX传爆药起传爆性能及驱动性能的影响特性,采用激光多普勒测速技术及瞬态太赫兹波多普勒干涉测速技术,对TATB/RDX传爆药在隔层起爆条件下的起爆、传播及驱动性能开展实验研究,获取了–45~70 ℃温度环境中TATB/RDX传爆药的到爆轰距离、爆轰反应区时间宽度、爆轰传播速度及驱动飞片的飞行速度曲线。结果表明:TATB/RDX传爆药的到爆轰距离及爆轰反应区时间宽度随环境温度的降低均近乎呈线性增长趋势;爆轰传播速度随环境温度的降低而逐渐提高;驱动飞片的速度随环境温度的变化特性在飞片主体-层裂层融合前后存在明显不同。
  • 图  1  炸药/窗口界面粒子速度测量实验装置

    Figure  1.  Experimental setup for the explosive/window interfacial velocity test

    图  2  炸药冲击转爆轰测量实验装置

    Figure  2.  Experimental setup for the explosive shock to detonation transition test

    图  3  炸药驱动大板实验装置

    Figure  3.  Experimental setup for the big plate driven test

    图  4  分体式高低温风冷加载系统

    Figure  4.  Hot and cold environment loading system

    图  5  环境温度加载曲线

    Figure  5.  Hot and cold environment loading record

    图  6  TDV测试典型原始信号

    Figure  6.  Typical signal captured by TDV

    图  7  –45~70 ℃温度环境中TATB/RDX传爆药的起传爆速度

    Figure  7.  Front velocity for hot and cold TATB/RDX explosives at the temperature from –45 ℃ to 70 ℃

    图  8  温度对TATB/RDX传爆药到爆轰距离的影响

    Figure  8.  Run distance to detonation varied with temperature for TATB/RDX explosive

    图  9  温度对TATB/RDX传爆药爆轰波波速的影响

    Figure  9.  Detonation phase velocity varied with temperature for TATB/RDX explosive

    图  10  温度对TATB/RDX传爆药爆轰反应区时间宽度的影响

    Figure  10.  Chemical reaction zone varied with temperature for TATB/RDX explosive

    图  11  TATB/RDX传爆药驱动飞片的典型速度曲线

    Figure  11.  Typical velocity of flyer driven by TATB/RDX explosive

    图  12  不同位置处TATB/RDX传爆药驱动飞片的速度对比

    Figure  12.  Velocity comparison of flyer at different point of TATB/RDX explosive

    图  13  飞片各点层裂层飞行持续时间的对比

    Figure  13.  Flying duration comparison of the spallation at different points

    图  14  散心爆轰驱动向滑移爆轰驱动的转变

    Figure  14.  Transformation from divergent detonation to grazing detonation

    图  15  温度对飞片各位置飞行速度的影响

    Figure  15.  Temperature effect on the flyer velocity at different positions

    图  16  待测炸药/LiF窗口典型粒子速度曲线

    Figure  16.  Typical particle velocity between the explosive sample and window

    图  17  TATB/RDX传爆药的pCJ随温度的变化

    Figure  17.  pCJ varied with temperature for TATB/RDX explosive

  • [1] WANG Y, SONG S W, HUANG C, et al. Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host-guest inclusion strategy [J]. Journal of Materials Chemistry A, 2019, 33(7): 19248–19257. DOI: 10.1039/C9TA04677A.
    [2] WATT D, PEUGETOT F, DOHERTY R, et al. Reduced sensitivity RDX, where are we? [C] // Proceedings of the 35th International Annual Conference of ICT. Karlsruhe: ICT, 2004.
    [3] ELBEIH A, ZEMAN S, PACHMAN J. Effect of polar plasticizers on the characteristics of selected cyclic nitramines [J]. Central European Journal of Energetic Materials, 2013, 10(3): 339–350. DOI: 10.12733/JICS20102176.
    [4] WEI X F, ZHANG A B, MA Y, et al. Toward low-sensitive and high-energetic cocrystal Ⅲ: thermodynamics of the energetic-energetic cocrystal formation [J]. CrystEngComm, 2015, 17(47): 9037–9047. DOI: 10.1039/C5CE02009C.
    [5] GONG F Y, ZHANG J H, DING L, et al. Mussel-inspired coating of energetic crystals: a compact core-shell structure with highly enhanced thermal stability [J]. Chemical Engineering Journal, 2017, 309: 140–150. DOI: 10.1016/J.CEJ.2016.10.020.
    [6] SHI Y B, BAI L F, LI J H, et al. Theoretical calculation into the effect of molar ratio on the structures, stability, mechanical properties and detonation performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/1,3,5-trinitro-1,3,5-triazacyco-hexane cocrys-tal [J]. Journal of Molecular Modeling, 2019, 25(25): 299. DOI: 10.1007/s00894-019-4181-6.
    [7] SURESH K, AULAKH D, PUREWAL J, et al. Optimizing hydrogen storage in MOFs through engineering of crystal morphology and control of crystal size [J]. Journal of the American Chemical Society, 2021, 143: 10727–10734. DOI: 10.1021/JACS.1C04926.
    [8] CAI J X, XIE C P, XIONG J, et al. High performance and heat-resistant pyrazole-1,2,4-triazole energetic materials: tuning the thermal stability by asymmetric framework and azo-bistriazole bridge [J]. Chemical Engineering Journal, 2022, 433: 134480. DOI: 10.1016/J.CEJ.2021.134480.
    [9] QU Y Z, QIAN W, ZHANG J H, et al. Interfacial engineered RDX/TATB energetic co-particles for enhanced safety performance and thermal stability [J]. Dalton Transactions, 2022, 51(27): 10527–10534. DOI: 10.1039/D2DT01421A.
    [10] 郭刘伟, 刘宇思, 汪斌, 等. 高温下TATB基钝感炸药爆轰波波阵面曲率效应实验研究 [J]. 含能材料, 2017, 25(2): 138–143. DOI: 10.11943/j.issn.1006-9941.2017.02.008.

    GUO L W, LIU Y S, WANG B, et al. Front curvature rate stick experiment of TATB based insensitive high explosives at high temperature [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 138–143. DOI: 10.11943/j.issn.1006-9941.2017.02.008.
    [11] 郭刘伟, 刘宇思, 黄宇, 等. 宽温域环境JB-9014炸药爆轰波波阵面曲率效应实验 [J]. 含能材料, 2019, 27(12): 1062–1068. DOI: 10.11943/CJEM2018323.

    GUO L W, LIU Y S, HUANG Y, et al. Front curvature rate stick experiment of JB-9014 over a wide temperature range [J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1062–1068. DOI: 10.11943/CJEM2018323.
    [12] OLIVIER B. Detonation velocity of a TATB-based high-explosive as a function of density, temperature and curvature [C] // Proceedings of the 15th International Detonation Symposium. ED, 2014: 477–484.
    [13] HILL L G, ASLAM T D. Detonation shock dynamics calibration for PBX 9502 with temperature, density, and material lot variations [C] // Proceedings of the 14th International Detonation Symposium. USA, 2010, 52(3): 779–788. DOI: 10.1109/TAC.2007.892382.
    [14] SOUERS P C, LAUDERBACH L, GARZA, R, et al. LX-17 and ufTATB data for corner-turning, failure and detonation [C] // Proceedings of the 14th International Detonation Symposium. USA, 2010, 52(3): 716–726. DOI: 10.1109/TAC.2007.892382.
    [15] WHITWORTH N J. CREST modelling of PBX 9502 corner turning experiments at different initial temperatures [J]. Journal of Physics: Conference Series, 2014, 500(5): 1–7. DOI: 10.1088/1742-6596/500/5/052050.
    [16] TAN K Y, WEN S G, HAN Y. Shock initiation characteristics of explosives at near-ambient temperatures [J]. Chinese Journal of Energetic Materials, 2016, 24(9): 905–910. DOI: 10.11943/J.ISSN.1006-9941.201609.015.
    [17] GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to –55°C [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599.
    [18] HOLLOWELL B C, GUSTAVSEN R L, DATTELBAUM D M, et al. Shock initiation of the TATB-based explosive PBX9502 cooled to 77 Kelvin [J]. Journal of Physics: Conference Series, 2014, 500(18): 182014. DOI: 10.1088/1742-6596/500/18/182014.
    [19] GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the TATB-based explosive PBX-9502 heated to –76 °C [C] // Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter 2015. NY, USA: AIP Publishing. DOI: 10.1063/1.4971475.
    [20] FRANCOIS E G, SANDERS V E, MORRIS J. Front curvature and rate stick data on formulations containing DAAF, TATB, RDX and HMX including diameter and temperature effects [C] // Shock Compression of Condensed Matter-2011. Chicago, Illinois: American Physical Society, 2011, DOI: 10.1063/1.3686346.
    [21] TARVER C M. Detonation reaction zones in condensed explosives [C] // 14th APS Topical Conference on SCCM. Baltimore, MD, USA: American Physical Society, 2005.
    [22] GUSTAVSEN R L, BARTRAM B D, SANCHEZ N J. Detonation wave profiles measured in plastic bonded explosives using 1 550 nm photon Doppler velocimetry [C] // Proceedings of the 16th Conference of the American-Physical-Society-Topical-Group on Shock Compression of Condensed Matter. NY, AIP Publishing, 2009. DOI: 10.1063/1.3295117.
    [23] ZHAI Z H, LIU Q, GUO L W, et al. Design of terahertz-wave Doppler interferometric velocimetry for detonation physics [J]. Applied Physics Letters, 2020, 116(16): 161102. DOI: 10.1063/1.5142415.
    [24] GERHARD M, REN B G, RAHM M. Terahertz Mach-Zehnder interferometer based on a hollow-core metallic ridge waveguide [J]. Applied Physics Letters, 2015, 106(17): 171112. DOI: 10.1063/1.4919588.
    [25] CHEN J C, KAUSHIK S. Terahertz interferometer that senses vibrations behind barriers [J]. IEEE Photonics Technology Letters, 2007, 19(7): 486–488. DOI: 10.1109/LPT.2007.893583.
    [26] HUANG X L, ZHAI Z H, FU H, et al. Experimental investigation of the deflagration rate for PBX utilizing terahertz-wave-based Doppler velocimetry [J]. Journal of the Optical Society of America B, 2022, 39(3): A25–A30. DOI: 10.1364/JOSAB.444723.
    [27] PENG W Y, YANG S Q, SHU J X, et al. Experimental investigation of shock response to an insensitive explosive under double-shock wave [J]. International Journal of Impact Engineering, 2023, 173(1): 1–11. DOI: 10.1016/j.ijimpeng.2022.104489.
    [28] 舒俊翔, 裴红波, 黄文斌, 等. 几种常用炸药的爆压与爆轰反应区精密测量 [J]. 爆炸与冲击, 2022, 42(5): 052301. DOI: 10.11883/bzycj-2021-0305.

    SHU J X, PEI H B, HUANG W B, et al. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives [J]. Explosion and Shock Waves, 2022, 42(5): 052301. DOI: 10.11883/bzycj-2021-0305.
  • 加载中
图(17)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  47
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-08-28
  • 网络出版日期:  2023-09-28
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回