Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive
-
摘要: 为了获得环境温度对TATB/RDX传爆药起传爆性能及驱动性能的影响特性,采用激光多普勒测速技术及瞬态太赫兹波多普勒干涉测速技术,对TATB/RDX传爆药在隔层起爆条件下的起爆、传播及驱动性能开展实验研究,获取了–45~70 ℃温度环境中TATB/RDX传爆药的到爆轰距离、爆轰反应区时间宽度、爆轰传播速度及驱动飞片的飞行速度曲线。结果表明:TATB/RDX传爆药的到爆轰距离及爆轰反应区时间宽度随环境温度的降低均近乎呈线性增长趋势;爆轰传播速度随环境温度的降低而逐渐提高;驱动飞片的速度随环境温度的变化特性在飞片主体-层裂层融合前后存在明显不同。
-
关键词:
- TATB/RDX传爆药 /
- 到爆轰距离 /
- 爆轰传播 /
- 飞片速度 /
- 环境温度
Abstract: 1 550 nm photon Doppler velocimetry and terahertz-wave Doppler interferometric velocimetry were used in the initiating and flyer driven experiments to gain data on the temperature effect for the TATB/RDX based explosive. Explosive/window interfacial velocity, run distance to detonation and the velocity of flyer driven by the explosive were measured respectively at different temperature. Experiment results at temperature –45, 20, and 70 ℃ reveal that the run distance to detonation, the reaction zone time width and the detonation phase velocity decrease with temperature. In particular, the run distance to detonation and the reaction zone time width both decrease almost linearly, while the linear coefficient is found to be 0.015 mm/℃ and 0.165 ns/℃, respectively. With the increase of temperature, the detonation phase velocity of TATB/RDX based explosive decreases nonlinearly, which differs from TATB based IHEs, for which it decreases linearly. Four stages obviously exist during the motion of the flyer, i.e., spallation, pursuit, remerging and the united flyer. Divergent or grazing detonation driving condition can be resolved based on the analysis for the spallation duration in big plate driven experiment. The peak velocity and the velocity during spallation for the flyer vary with temperature in the same trend. The velocity at ambient temperature is the highest, hot one is the next and then the cold one. This may be related to the different reaction zone performance at different temperature. When the flyer united as a whole again, the final velocity under cold environment turns to be the highest one, the hot result almost equals to the ambient one, which may be related to the different detonation product performance at different temperature. The metal accelerating behavior at different temperature indicates that the reaction zone and the detonation product for TATB/RDX based explosive vary with temperature with the different path, which need more experiment data and numerical simulation for further investigation. -
高可靠性和高安全性是现代武器弹药的两项重要需求,传爆药在爆炸序列中起着能量放大和传递作用,对于武器弹药爆炸序列的可靠动作和异常环境下的弹药安全性至关重要[1]。兼具高能量和低感度特性的传爆药配方及其性能研究,成为了含能材料的研究热点[2-8]。
TATB/RDX传爆药不仅保留了RDX的高能量属性,又融入了TATB的力、热低感度特性。Qu等[9]的研究表明,TATB/RDX传爆药的撞击感度较RDX有大幅下降,同时热分解温度提升,安全性能大幅提升。以TATB/RDX传爆药为代表的美国PBXN-7传爆药和英国Rowanex3601传爆药在钝感弹药中得到广泛应用。TATB/RDX传爆药的低感度得益于其中的TATB成分。TATB为钝感炸药,感度较低,但其反应区较宽,易受环境温度的影响。已有研究结果表明,随着环境温度的降低,TATB基炸药的爆轰波波速提高;波阵面中心与边界之间的时间差增大,波阵面曲率半径减小[10-13];爆轰传播拐角过程中的“死区”区域明显变大[14-15],起爆难度增加[16-19]。PBXN-7传爆药的曲率效应实验结果[20]表明,TATB成分的加入使得PBXN-7传爆药的爆轰传播性能受温度的影响较大。宽温域环境在武器弹药全天候作战剖面中是难以避免的,对TATB/RDX传爆药在不同温度环境中的起爆及驱动性能开展研究,对武器弹药的动作可靠性评估、爆炸序列的优化设计及钝感复合炸药基础爆轰性能的认识有着重要的意义。研究武器爆炸序列中待测炸药的宽温域冲击起爆及驱动性能,对实验设计及测试技术均有着更高的要求,尤其是低温易凝霜环境,不利于传统光电测试技术的开展,用于研究炸药基础爆轰性能的实验技术也无法直接应用于爆炸序列的性能研究中。
本文中,采用不凝霜宽温域环境加载技术、1 550 nm激光多普勒测速(photon Doppler velocimetry,PDV)技术[21-22]和无损穿透瞬态太赫兹波多普勒干涉测速(terahertz-wave Doppler interferometric velocimetry,TDV)技术[23-27],对TATB/RDX传爆药在–45~70 ℃温度环境中的爆轰增长、传播及驱动性能开展实验研究,探讨宽温域环境对TATB/RDX传爆药的反应区宽度、到爆轰距离、爆轰波速及驱动性能的影响。
1. 实 验
1.1 实验装置
本文中包含3种实验装置和2类测试技术,分别如图1~3所示。图1为炸药/窗口界面粒子速度测量实验装置。采用雷管起爆传爆药,冲击波经惰性隔层起爆待测炸药。在待测炸药末端中心点设置测试窗口,采用PDV测试技术对炸药/窗口的界面粒子速度进行测量,用以研究待测炸药的爆轰反应区剖面[21-22]。窗口材料为LiF单晶,与炸药的接触面镀0.7 μm厚的反射铝膜。实验所用PDV测速探头的输出光斑直径小于0.3 mm,激光波长为1 550 nm。实验所用传爆药为JH-9005(RDX与黏结剂的质量比为97∶3),尺寸为
∅ 50 mm×12 mm,密度为1.644 g/cm3。主炸药(TATB、RDX与黏结剂的质量比为 60∶35∶5)的尺寸为∅ 150 mm×37 mm,密度为1.816 g/cm3。传爆药与待测炸药之间的惰性隔层材料为不锈钢,厚度为2 mm。图2~3实验装置中的装药序列同图1。图2为爆轰增长及传播测量实验装置,采用TDV测试技术[23]对炸药中心爆轰波波阵面的传播历程进行测量,用以研究待测炸药冲击转爆轰过程及爆轰传播速度。太赫兹波是一种振荡频率介于微波与远红外波之间的电磁波,具有对多数非极性物质(包括常用固体炸药)穿透性好的特点[23-25]。TDV技术采用的太赫兹波能够有效穿透炸药,并对其内部的爆轰波或冲击波面进行非侵入式测量,从而获取爆轰波或冲击波的速度变化历程[26-27]。实验所采用的太赫兹波频率为0.214 67 THz,太赫兹波光束入射至炸药内的光斑尺寸约为6 mm(以半高宽计)。
图3为炸药驱动大板实验装置,待测炸药驱动下端面尺寸为
∅ 150 mm×2 mm的紫铜板,采用多点PDV测试技术对大板飞片各位置的飞行速度进行测量,用以研究待测炸药的散心及滑移爆轰驱动性能。以紫铜板中心为起点,沿待测炸药径向,每间隔14 mm布置PDV探头,共计6个,最边缘测点所在位置距离紫铜板边缘为5 mm。1.2 环境条件
实验中采用分体式高低温风冷加载系统对炸药件进行环境温度的加载,加载系统如图4所示。图4(a)为冷源设备,负责冷热空气的产生及程序控温,图4(b)为温度实验箱,内含待测炸药件及测试所需窗口。为了保障炸药件所处环境温度的一致性及测试系统的正常工作,在实验过程中,温度实验箱的位置不再移动。在–45~70 ℃范围内,选取–45、20和70 ℃作为本实验的环境温度点。环境温度的加载曲线如图5所示,保温时长不低于180 min。
2. 结果与分析
2.1 环境温度对TATB/RDX传爆药起传爆性能的影响
采用TDV测试技术获取的TATB/RDX传爆药爆轰增长及传播的典型信号如图6所示。TDV信号的周期反映了所测波阵面的速度,周期越长,所测波阵面速度越低;信号幅值与所测波阵面反射太赫兹波的强度以及穿透深度有关。在炸药爆轰增长、传播及产物膨胀的不同阶段,所测冲击波/爆轰波波阵面的传播速度及其反射太赫兹波的强度均不同,因此在TDV信号中可明确分辨炸药内的爆轰增长(S1)、爆轰传播(S2)及爆轰产物的膨胀过程(S3)。以S2爆轰传播与S3爆轰产物膨胀过程的分界为起点,对TDV所测信号的周期进行统计,结合所用太赫兹波在所测炸药内传播的折射率系数[23],给出所测炸药的到爆轰距离(run distance to detonation,RDTD);对TDV所测信号的振荡频率进行分析[23],给出所测波阵面的传播速度。
采用TDV技术获取的–45~70 ℃温度环境中TATB/RDX传爆药起传爆过程中的速度如图7所示。冲击波在炸药内经过不同距离的增长过程后转为爆轰状态,爆轰波波速基本稳定。不同温度中TATB/RDX传爆药的到爆轰距离及爆轰波波速如图8~9所示。可见,随着环境温度的降低,TATB/RDX传爆药的到爆轰距离呈线性增加,爆轰波波速逐渐提高。这可能是因为低温环境造成炸药的点火阈值提高,起爆难度变大。环境温度降低引起炸药密度增大,从而使得炸药能量释放的时间变长,反应区宽度增大(图10),反应区内的平衡时间变长,到爆轰距离增大。且密度的增大提高了炸药的能量密度,反应区内驱动爆轰波波阵面传播的能量增多,爆轰波传播速度变快。该趋势与TATB基钝感炸药曲率效应实验结果[11, 20]一致,但RDX成分的加入使得TATB/RDX传爆药爆轰波波速随温度的降低呈现非线性增长趋势。在–45~70 ℃温度环境中,TATB/RDX传爆药在2 mm不锈钢隔层起爆条件下的到爆轰距离随环境温度的降低呈线性增大趋势,线性系数为0.015 mm/℃;TATB/RDX传爆药的爆轰反应区时间宽度随环境温度的降低而线性增大,线性系数为0.165 ns/℃,该趋势与TATB基钝感炸药PBX-9502反应区宽度的预测模型[13]相一致。
2.2 环境温度对TATB/RDX传爆药驱动性能的影响
采用PDV测试技术测量的TATB/RDX传爆药驱动2 mm紫铜飞片的典型速度曲线如图11所示。从图11可以看出,飞片在飞行过程中具有明显的多阶段特征,其中,阶段a为飞片外表面的层裂层在冲击波来回反射作用下自由飞行的过程;阶段b为飞片的主体部分追赶上表面层裂层的过程;阶段c为飞片主体部分与层裂层的融合过程;阶段d则为飞片主体与层裂层融合完成后,在爆轰产物驱动下整体飞行的过程。
在70 mm半径范围内,飞片表面各处速度曲线的对比如图12所示。从图12可以看出,不同半径位置的飞片速度曲线剖面具有相似性,但随着半径的增大,飞片在测量方向的速度存在下降趋势,层裂层的飞行持续时间缩短,在测点r=42 mm处的速度变化最明显,层裂层自由飞行的持续时间变化最突出(见图13),这可能是因为在r=42 mm附近,爆轰驱动模式由散心爆轰驱动转变成滑移爆轰驱动。以惰性隔层/待测炸药的接触面中心为原点,以起爆方向为基线,计算得到散心爆轰驱动向滑移爆轰驱动的转变角度(见图14)约为49°。
在–45~70 ℃温度环境中,TATB/RDX传爆药驱动大板飞片各位置处的飞行速度曲线的对比如图15所示。飞片各点的起跳速度及层裂层的飞行速度与温度有相同的变化趋势,即:常温速度最高,高温次之,低温最低。这可能是因为飞片主体/层裂层融合前(阶段a)的驱动性能受炸药爆轰反应区特性的影响较大。对本实验中(图1)获取的界面粒子速度(图16)进行处理[28],计算出不同环境温度中待测炸药的CJ点爆压pCJ如图17所示。可以看出,在–45~70 ℃温度环境中,TATB/RDX传爆药的常温pCJ最高,高温次之,低温最低。该结果支持了上述“飞片主体/层裂层融合前(阶段a)的驱动性能受炸药爆轰反应区特性的影响较大”的猜想。
在散心爆轰驱动区(r<42 mm),大板飞片层裂层的速度及其飞行持续时间随着环境温度的变化趋势一致,但在滑移爆轰驱动区(r>42 mm),环境温度对层裂层飞行持续时间的影响并不明显。这可能与2种爆轰驱动方式下飞片主体的速度随环境温度的变化特性不同有关。
大板飞片主体和层裂层融合完成后的加速飞行速度(阶段d)受低温环境的影响较大,除r=70 mm处,低温环境中飞片的d阶段飞行速度均高于常温和高温结果,而在常温和高温环境中结果基本相同。这可能是由于低温环境中爆轰产物的特性与高温及常温结果差异较大造成的。
3. 结 论
采用PDV及TDV测试技术对TATB/RDX传爆药在–45~70 ℃温度环境中的起传爆性能及驱动性能进行了实验研究,结果表明:TATB/RDX传爆药的到爆轰距离由高温70 ℃的1.3 mm增大到低温–45 ℃的3.1 mm,且近乎呈线性增大趋势,线性系数为0.015 mm/℃。TATB/RDX传爆药的爆轰传播速度随环境温度的降低呈非线性增大趋势;TATB/RDX传爆药的驱动性能随温度的变化趋势在飞片的主体-层裂层融合前后存在明显差异。
-
-
[1] WANG Y, SONG S W, HUANG C, et al. Hunting for advanced high-energy-density materials with well-balanced energy and safety through an energetic host-guest inclusion strategy [J]. Journal of Materials Chemistry A, 2019, 33(7): 19248–19257. DOI: 10.1039/C9TA04677A. [2] WATT D, PEUGETOT F, DOHERTY R, et al. Reduced sensitivity RDX, where are we? [C] // Proceedings of the 35th International Annual Conference of ICT. Karlsruhe: ICT, 2004. [3] ELBEIH A, ZEMAN S, PACHMAN J. Effect of polar plasticizers on the characteristics of selected cyclic nitramines [J]. Central European Journal of Energetic Materials, 2013, 10(3): 339–350. DOI: 10.12733/JICS20102176. [4] WEI X F, ZHANG A B, MA Y, et al. Toward low-sensitive and high-energetic cocrystal Ⅲ: thermodynamics of the energetic-energetic cocrystal formation [J]. CrystEngComm, 2015, 17(47): 9037–9047. DOI: 10.1039/C5CE02009C. [5] GONG F Y, ZHANG J H, DING L, et al. Mussel-inspired coating of energetic crystals: a compact core-shell structure with highly enhanced thermal stability [J]. Chemical Engineering Journal, 2017, 309: 140–150. DOI: 10.1016/J.CEJ.2016.10.020. [6] SHI Y B, BAI L F, LI J H, et al. Theoretical calculation into the effect of molar ratio on the structures, stability, mechanical properties and detonation performance of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane/1,3,5-trinitro-1,3,5-triazacyco-hexane cocrys-tal [J]. Journal of Molecular Modeling, 2019, 25(25): 299. DOI: 10.1007/s00894-019-4181-6. [7] SURESH K, AULAKH D, PUREWAL J, et al. Optimizing hydrogen storage in MOFs through engineering of crystal morphology and control of crystal size [J]. Journal of the American Chemical Society, 2021, 143: 10727–10734. DOI: 10.1021/JACS.1C04926. [8] CAI J X, XIE C P, XIONG J, et al. High performance and heat-resistant pyrazole-1,2,4-triazole energetic materials: tuning the thermal stability by asymmetric framework and azo-bistriazole bridge [J]. Chemical Engineering Journal, 2022, 433: 134480. DOI: 10.1016/J.CEJ.2021.134480. [9] QU Y Z, QIAN W, ZHANG J H, et al. Interfacial engineered RDX/TATB energetic co-particles for enhanced safety performance and thermal stability [J]. Dalton Transactions, 2022, 51(27): 10527–10534. DOI: 10.1039/D2DT01421A. [10] 郭刘伟, 刘宇思, 汪斌, 等. 高温下TATB基钝感炸药爆轰波波阵面曲率效应实验研究 [J]. 含能材料, 2017, 25(2): 138–143. DOI: 10.11943/j.issn.1006-9941.2017.02.008.GUO L W, LIU Y S, WANG B, et al. Front curvature rate stick experiment of TATB based insensitive high explosives at high temperature [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 138–143. DOI: 10.11943/j.issn.1006-9941.2017.02.008. [11] 郭刘伟, 刘宇思, 黄宇, 等. 宽温域环境JB-9014炸药爆轰波波阵面曲率效应实验 [J]. 含能材料, 2019, 27(12): 1062–1068. DOI: 10.11943/CJEM2018323.GUO L W, LIU Y S, HUANG Y, et al. Front curvature rate stick experiment of JB-9014 over a wide temperature range [J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1062–1068. DOI: 10.11943/CJEM2018323. [12] OLIVIER B. Detonation velocity of a TATB-based high-explosive as a function of density, temperature and curvature [C] // Proceedings of the 15th International Detonation Symposium. ED, 2014: 477–484. [13] HILL L G, ASLAM T D. Detonation shock dynamics calibration for PBX 9502 with temperature, density, and material lot variations [C] // Proceedings of the 14th International Detonation Symposium. USA, 2010, 52(3): 779–788. DOI: 10.1109/TAC.2007.892382. [14] SOUERS P C, LAUDERBACH L, GARZA, R, et al. LX-17 and ufTATB data for corner-turning, failure and detonation [C] // Proceedings of the 14th International Detonation Symposium. USA, 2010, 52(3): 716–726. DOI: 10.1109/TAC.2007.892382. [15] WHITWORTH N J. CREST modelling of PBX 9502 corner turning experiments at different initial temperatures [J]. Journal of Physics: Conference Series, 2014, 500(5): 1–7. DOI: 10.1088/1742-6596/500/5/052050. [16] TAN K Y, WEN S G, HAN Y. Shock initiation characteristics of explosives at near-ambient temperatures [J]. Chinese Journal of Energetic Materials, 2016, 24(9): 905–910. DOI: 10.11943/J.ISSN.1006-9941.201609.015. [17] GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to –55°C [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599. [18] HOLLOWELL B C, GUSTAVSEN R L, DATTELBAUM D M, et al. Shock initiation of the TATB-based explosive PBX9502 cooled to 77 Kelvin [J]. Journal of Physics: Conference Series, 2014, 500(18): 182014. DOI: 10.1088/1742-6596/500/18/182014. [19] GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the TATB-based explosive PBX-9502 heated to –76 °C [C] // Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter 2015. NY, USA: AIP Publishing. DOI: 10.1063/1.4971475. [20] FRANCOIS E G, SANDERS V E, MORRIS J. Front curvature and rate stick data on formulations containing DAAF, TATB, RDX and HMX including diameter and temperature effects [C] // Shock Compression of Condensed Matter-2011. Chicago, Illinois: American Physical Society, 2011, DOI: 10.1063/1.3686346. [21] TARVER C M. Detonation reaction zones in condensed explosives [C] // 14th APS Topical Conference on SCCM. Baltimore, MD, USA: American Physical Society, 2005. [22] GUSTAVSEN R L, BARTRAM B D, SANCHEZ N J. Detonation wave profiles measured in plastic bonded explosives using 1 550 nm photon Doppler velocimetry [C] // Proceedings of the 16th Conference of the American-Physical-Society-Topical-Group on Shock Compression of Condensed Matter. NY, AIP Publishing, 2009. DOI: 10.1063/1.3295117. [23] ZHAI Z H, LIU Q, GUO L W, et al. Design of terahertz-wave Doppler interferometric velocimetry for detonation physics [J]. Applied Physics Letters, 2020, 116(16): 161102. DOI: 10.1063/1.5142415. [24] GERHARD M, REN B G, RAHM M. Terahertz Mach-Zehnder interferometer based on a hollow-core metallic ridge waveguide [J]. Applied Physics Letters, 2015, 106(17): 171112. DOI: 10.1063/1.4919588. [25] CHEN J C, KAUSHIK S. Terahertz interferometer that senses vibrations behind barriers [J]. IEEE Photonics Technology Letters, 2007, 19(7): 486–488. DOI: 10.1109/LPT.2007.893583. [26] HUANG X L, ZHAI Z H, FU H, et al. Experimental investigation of the deflagration rate for PBX utilizing terahertz-wave-based Doppler velocimetry [J]. Journal of the Optical Society of America B, 2022, 39(3): A25–A30. DOI: 10.1364/JOSAB.444723. [27] PENG W Y, YANG S Q, SHU J X, et al. Experimental investigation of shock response to an insensitive explosive under double-shock wave [J]. International Journal of Impact Engineering, 2023, 173(1): 1–11. DOI: 10.1016/j.ijimpeng.2022.104489. [28] 舒俊翔, 裴红波, 黄文斌, 等. 几种常用炸药的爆压与爆轰反应区精密测量 [J]. 爆炸与冲击, 2022, 42(5): 052301. DOI: 10.11883/bzycj-2021-0305.SHU J X, PEI H B, HUANG W B, et al. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives [J]. Explosion and Shock Waves, 2022, 42(5): 052301. DOI: 10.11883/bzycj-2021-0305. 期刊类型引用(0)
其他类型引用(1)
-