柱形装药空中爆炸冲击波荷载研究

王明涛 程月华 吴昊

王明涛, 程月华, 吴昊. 柱形装药空中爆炸冲击波荷载研究[J]. 爆炸与冲击, 2024, 44(4): 043201. doi: 10.11883/bzycj-2023-0197
引用本文: 王明涛, 程月华, 吴昊. 柱形装药空中爆炸冲击波荷载研究[J]. 爆炸与冲击, 2024, 44(4): 043201. doi: 10.11883/bzycj-2023-0197
WANG Mingtao, CHENG Yuehua, WU Hao. Study on blast loadings of cylindrical charges air explosion[J]. Explosion And Shock Waves, 2024, 44(4): 043201. doi: 10.11883/bzycj-2023-0197
Citation: WANG Mingtao, CHENG Yuehua, WU Hao. Study on blast loadings of cylindrical charges air explosion[J]. Explosion And Shock Waves, 2024, 44(4): 043201. doi: 10.11883/bzycj-2023-0197

柱形装药空中爆炸冲击波荷载研究

doi: 10.11883/bzycj-2023-0197
基金项目: 国家自然科学基金(52078379)
详细信息
    作者简介:

    王明涛(1996-  ),男,博士研究生,wangmingtao@tongji.edu.cn

    通讯作者:

    程月华(1994-  ),女,博士,博士后,yhcheng@tongji.edu.cn

  • 中图分类号: O383

Study on blast loadings of cylindrical charges air explosion

  • 摘要: 受比例距离、装药长径比、起爆方式、方位角、冲击波入射角以及反射面相对位置等多种因素的影响,球形装药空中爆炸冲击波荷载的计算方法不适用于柱形装药。为探究柱形装药空中自由场爆炸冲击波入射和反射荷载,首先,开展柱形TNT装药单端起爆的空中爆炸试验,并基于显式动力学分析软件AUTODYN进行数值模拟,通过与试验和规范进行对比,验证了采用的有限元分析方法的适用性。进一步开展考虑比例距离、长径比、起爆方式、方位角和刚性反射等因素的1000余组柱形装药空中爆炸工况的数值模拟。基于模拟结果,揭示了柱形装药空中爆炸入射冲击波峰值超压和最大冲量及其形状因子的分布特征,提出峰值超压和最大冲量临界比例距离的判定准则和确定方法,阐明了刚性反射冲击波峰值超压和反射系数的变化规律。最后,提出柱形装药空中爆炸入射和反射冲击波荷载的计算方法,并得到360余组试验数据的验证。该方法可快速计算作用于建筑结构上的爆炸荷载,并为弹药毁伤效能评估、结构动态响应和破坏分析及其抗爆设计提供参考。
  • 图  1  柱形装药爆炸试验传感器布置

    Figure  1.  Cylindrical charge explosion test setup and sensor layout

    图  2  柱形装药空中爆炸试验有限元模型

    Figure  2.  Finite element model of cylindrical charges air explosion test

    图  3  不同网格尺寸下的压力时程曲线

    Figure  3.  Pressure-time histories corresponding to different grid sizes

    图  4  入射和反射超压时程曲线的试验和数值模拟结果对比

    Figure  4.  Comparisons of the test and simulated incident and reflected overpressure-time histories

    图  5  Shi等[13]爆炸试验设置和有限元模型

    Figure  5.  Explosion test setup, finite element model of Shi et al.[13]

    图  6  典型测点处超压时程曲线

    Figure  6.  Overpressure-time histories at typical measurement points

    图  7  UFC 3-340-02规范[4]球形装药中心起爆有限元模型

    Figure  7.  Finite element model of spherical charges ignited at the central point in UFC 3-340-02 specification[4]

    图  8  入射峰值超压的规范[4]和模拟结果对比

    Figure  8.  Comparisons of simulated and specified[4] peak incident overpressure

    图  9  柱形装药长径比、起爆方式和方位角

    Figure  9.  Length-to-diameter ratio, initiation method, and azimuth angle of cylindrical charges

    图  10  柱形装药空中爆炸自由场有限元模型

    Figure  10.  Finite element model of cylindrical charges air explosion

    图  11  柱形装药轴向和径向冲击波反射示意图

    Figure  11.  Schematic diagram of axial and radial blast wave reflection of cylindrical charge

    图  12  典型柱形装药空中爆炸的反射场有限元模型

    Figure  12.  Typical finite element model for reflections of cylindrical charges air explosion

    图  13  柱形装药3种起爆方式下的压力云图(L/D=1)

    Figure  13.  Pressure contours of cylindrical charge under three ignition methods (L/D=1)

    图  14  典型长径比柱形装药中心起爆压力云图

    Figure  14.  Pressure contours of central ignited cylindrical charge with typical L/D

    图  15  柱形装药中心起爆不同时刻的压力云图(L/D=1)

    Figure  15.  Instantaneous pressure contours of central ignited cylindrical charge (L/D=1)

    图  16  典型长径比柱形装药3种起爆方式的峰值超压分布

    Figure  16.  Peak overpressure distributions of cylindrical charge with typical L/D and three ignition methods

    图  17  典型长径比柱形装药3种起爆方式的峰值超压形状因子分布

    Figure  17.  Peak overpressure shape factor distributions of cylindrical charge with typical L/D and three ignition methods

    图  18  典型峰值超压形状因子与最大峰值超压形状因子

    Figure  18.  Typical shape factor and maximum shape factor of peak overpressure

    图  19  3种起爆方式下不同长径比柱形装药的峰值超压临界比例距离

    Figure  19.  Critical scaled distance of peak overpressure for cylindrical charge with different L/D under three ignition methods

    图  20  典型长径比柱形装药3种起爆方式的最大冲量分布

    Figure  20.  Maximal impulse distributions of cylindrical charge with typical L/D and three ignition methods

    图  21  典型长径比柱形装药3种起爆方式的最大冲量形状因子分布

    Figure  21.  Maximal impulse shape factor distributions of cylindrical charge with typical L/D and three ignition methods

    图  22  典型最大冲量形状因子与最大的最大冲量形状因子

    Figure  22.  Typical shape factor and maximum shape factor of maximal impulse

    图  23  3种起爆方式下不同长径比柱形装药的最大冲量临界比例距离

    Figure  23.  Critical scaled distance of maximal impulse for cylindrical charge with different L/D under three ignition methods

    图  24  理想爆炸波超压时程曲线

    Figure  24.  Ideal blast wave overpressure-time histories

    图  25  3种起爆方式下柱形装药轴向反射峰值超压与投影距离的关系

    Figure  25.  Dependence of axial reflected peak overpressure on projection distance of cylindrical charge with three ignition methods

    图  26  典型长径比下柱形装药轴向反射峰值超压与投影距离的关系

    Figure  26.  Dependence of axial reflected peak overpressure on projection distance of cylindrical charge with typical L/Ds

    图  27  典型长径比柱形装药中心起爆的轴向和径向超压反射系数

    Figure  27.  Axial and radial overpressure reflection coefficients of central ignited cylindrical charge with typical L/Ds

    图  28  L/D=0.25柱形装药单/双端起爆的轴向和径向峰值超压反射系数

    Figure  28.  Axial and radial peak overpressure reflection coefficients of single/double-end ignited cylindrical charge with L/D=0.25

    图  29  爆炸荷载试验与计算结果对比

    Figure  29.  Comparisons of test data and calculated results of blast loadings

    表  1  $L/D{\text{≥}}1 $柱形装药入射峰值超压拟合公式系数

    Table  1.   Fitted formula coefficients for peak incident overpressure of central ignited cylindrical charges with $L/D{\text{≥}}1 $

    起爆方式 α/(°) 0.3 m/kg1/3Z≤1 m/kg1/3 1 m/kg1/3<Z≤15 m/kg1/3
    A B C R2 A B C R2
    中心起爆 0 173 9 399 0.943 7 −211 390 31 0.612 6
    30 −33 503 −166 0.904 5 −200 424 40 0.902 7
    60 −103 958 −491 0.988 3 −202 644 −11 0.969 0
    90 −242 1 352 −141 0.926 4 281 501 −11 0.986 3
    单端起爆 0 −56 1 013 −900 0.884 5 −491 619 22 0.616 4
    30 −39 365 −96 0.800 2 −284 546 1 0.880 1
    60 60 −131 693 0.940 7 −114 509 9 0.961 8
    90 −225 1 438 −244 0.941 8 306 512 −19 0.976 8
    120 −205 1 732 −1 360 0.977 9 −238 721 −16 0.969 6
    150 −27 580 −261 0.943 1 −171 431 43 0.915 8
    180 77 1 246 −1 057 0.909 9 −531 574 34 0.775 3
    双端起爆 0 −25 865 −796 0.875 3 −887 1 096 −56 0.733 9
    30 −29 304 −24 0.793 5 −313 593 4 0.914 4
    60 29 22 602 0.954 3 −69 505 18 0.968 2
    90 −255 2 054 −1 068 0.923 7 187 694 −74 0.932 8
    下载: 导出CSV

    表  2  最大冲量临界比例距离拟合公式系数

    Table  2.   Coefficients of fitted formula for the maximal impulse critical scaled distance

    起爆方式 拟合公式系数
    k a b c R2
    中心起爆 2.13 0.25 1.14 0.32 0.945 0
    单端起爆 2.48 0.24 1.09 0.61 0.981 2
    双端起爆 2.60 0.23 0.97 0.46 0.927 8
    下载: 导出CSV

    表  3  最大冲量拟合公式系数

    Table  3.   Coefficients of the fitted formula for the maximal impulse

    起爆方式 公式拟合系数
    A1,1 A1,2 A1,1,1 A1,1,2 A1,2,1 A1,2,2 A1,3,1 A1,3,2 A1,4,1 A1,4,2
    中心 2 088 −2 044 1 222 −1 043 −4 422 4 503 2 583 −2 715 −971 1 101
    单端 341 −110 276 −257 186 −163 247 −236 −27 105
    双端 640 −384 1 304 −783 −2077 1 352 1 026 −620 85 −190
    起爆方式 A2,1 A2,2 A2,1,1 A2,1,2 A2,2,1 A2,2,2 A2,3,1 A2,3,2 A2,4,1 A2,4,2
    中心 −543 568 −550 459 1 321 −1 436 −677 824 173 −293
    单端 −135 21 −127 101 −43 22 −106 95 −40 −23
    双端 −88 −123 −516 225 528 16 −154 −126 −174 250
    起爆方式 A3,1 A3,2 A3,1,1 A3,1,2 A3,2,1 A3,2,2 A3,3,1 A3,3,2 A3,4,1 A3,4,2
    中心 45 −50 60 −49 −110 134 42 −73 3 21
    单端 18 −1 17 −12 7 −2 13 −11 11 2
    双端 15 28 57 −16 −63 −33 12 34 25 −38
    下载: 导出CSV
  • [1] US Department of the Army. Fundamentals of protective design for conventional weapons: TM 5-855-1 [S]. Washington, USA: US Department of the Army, 1986.
    [2] American Society of Civil Engineers. Blast protection of buildings: ASCE 59-11 [S]. Reston, Virginia, USA: American Society of Civil Engineers, 2011.
    [3] Canadian Standards Association. Design and assessment of buildings subjected to blast loads: CSA/S850-23 [S]. Toronto, Canda: Canadian Standards Association, 2023.
    [4] US Department of Defense. Structures to resist the effects of accidental explosions, with change 2: UFC 3-340-02 [S]. Washington, USA: US Department of Defense, 2014.
    [5] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722-2014 [S]. 北京: 中国标准出版社, 2014.
    [6] STONER R G, BLEAKNEY W. The attenuation of spherical shock waves in air [J]. Journal of Applied Physics, 1948, 19(7): 670–678. DOI: 10.1063/1.1698189.
    [7] BRODE H L. Numerical solutions of spherical blast waves [J]. Journal of Applied Physics, 1955, 26(6): 766–775. DOI: 10.1063/1.1722085.
    [8] BAKER W E. Explosions in air [M]. Austin, USA: University of Texas Press, 1974: 6–10.
    [9] HENRYCH J, ABRAHAMSON G R. The dynamics of explosion and its use [M]. Amsterdam New York, USA: Elsevier Science Publishing Company, 1979: 218.
    [10] MILLS C A. The design of concrete structures to resist explosions and weapon effects [C]// The 1st International Conference on Concrete for Hazard Protections. Edinburgh, UK: European Cement Association, 1987: 11–15.
    [11] WU C Q, HAO H. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. DOI: 10.1016/j.ijimpeng.2004.03.002.
    [12] KINNEY G F, GRAHAM K J, KENNETH J. Explosive shocks in air [M]. Berlin, Germany: Springer Verlag, 1985: 1–17.
    [13] SHI Y C, WANG N, CUI J, et al. Experimental and numerical investigation of charge shape effect on blast load induced by near-field explosions [J]. Process Safety and Environmental Protection, 2022, 165: 266–277. DOI: 10.1016/j.psep.2022.07.018.
    [14] ISMAIL M M, MURRAY S G. Study of the blast waves from the explosion of nonspherical charges [J]. Propellants, Explosives, Pyrotechnics, 1993, 18: 132–138. DOI: 10.1002/prep.19930180304.
    [15] SIMOENS B, LEFEBVRE M H, MINAMI F. Influence of different parameters on the TNT-equivalent of an explosion [J]. Central European Journal of Energetic Materials, 2011, 8(1): 53–67.
    [16] ANASTACIO A C, KNOCK C. Radial blast prediction for high explosive cylinders initiated at both ends [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(4): 682–687. DOI: 10.1002/prep.201500302.
    [17] KNOCK C, DAVIES N. Predicting the peak pressure from the curved surface of detonating cylindrical charges [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 203–209. DOI: 10.1002/prep.201000001.
    [18] KNOCK C, DAVIES N. Predicting the impulse from the curved surface of detonating cylindrical charges [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(2): 105–109. DOI: 10.1002/prep.201000002.
    [19] KNOCK C, DAVIES N, REEVES T. Predicting blast waves from the axial direction of a cylindrical charge [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 169–179. DOI: 10.1002/prep.201300188.
    [20] GAO C, KONG X Z, FANG Q, et al. Numerical investigation on free air blast loads generated from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation [J]. Defence Technology, 2022, 18(9): 1662–1678. DOI: 10.1016/j.dt.2021.07.013.
    [21] WU C Q, FATTORI G, WHITTAKER A, et al. Investigation of air-blast effects from spherical-and cylindrical-shaped charges [J]. International Journal of Protective Structures, 2010, 1(3): 345–362. DOI: 10.1260/2041-4196.1.3.345.
    [22] HU Y, CHEN L, FANG Q, et al. Blast loading model of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder [J]. Engineering Structures, 2018, 175: 304–321. DOI: 10.1016/j.engstruct.2018.08.013.
    [23] SHERKAR P, SHIN J, WHITTAKER A, et al. Influence of charge shape and point of detonation on blast-resistant design [J]. Journal of Structural Engineering, 2016, 142(2): 1–11. DOI: 10.1061/(asce)st.1943-541x.0001371.
    [24] XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 1–13. DOI: 10.1061/(asce)st.1943-541x.0002694.
    [25] THAM C Y. Numerical simulation on the interaction of blast waves with a series of aluminum cylinders at near-field [J]. International Journal of Impact Engineering, 2009, 36(1): 122–131. DOI: 10.1016/j.ijimpeng.2007.12.011.
    [26] SIMOENS B, LEFEBVRE M. Influence of the shape of an explosive charge: quantification of the modification of the pressure field [J]. Central European Journal of Energetic Materials, 2015, 12(2): 195–213.
    [27] PAPE R, MNISZEWSKI K R, LONGINOW A, et al. Explosion phenomena and effects of explosions on structures Ⅲ: methods of analysis (explosion damage to structures) and example cases [J]. Practice Periodical on Structural Design and Construction, 2010, 15(2): 153–169. DOI: 10.1061/(ASCE)SC.1943-5576.0000040.
    [28] KNOCK C, DAVIES N. Blast waves from cylindrical charges [J]. Shock Waves, 2013, 23(4): 337–343. DOI: 10.1007/s00193-013-0438-7.
    [29] YANG T C, LUO Y Z, HU G Q, et al. Probability distribution and determination of blast loading during structural blast resistant study [J]. Shock and Vibration, 2022. DOI: Artn 736728810.1155/2022/7367288.
    [30] WISOTSKI J, SNYER. W H. Characteristics of blast waves obtained from cylindrical high explosive charges: 80210, DRI-2286 [R]. Denver, USA: University of Denver, Denver Research Institute, 1965.
    [31] PLOOSTER M N. Blast effects from cylindrical explosive charges: experimental measurements: NWC TP 6382 [R]. China Lake, USA: Naval Report Centre, 1982.
    [32] SU Q, WU H, SUN H S, et al. Experimental and numerical studies on dynamic behavior of reinforced UHPC panel under medium-range explosions [J]. International Journal of Impact Engineering, 2021, 148: 1–23. DOI: 10.1016/j.ijimpeng.2020.103761.
    [33] TIAN S Z, YAN Q S, DU X L, et al. Experimental and numerical studies on the dynamic response of precast concrete slabs under blast load [J]. Journal of Building Engineering, 2023, 70: 1–18. DOI: 10.1016/j.jobe.2023.106425.
    [34] WHARTON R K, FORMBY S A, MERRIFIELD R. Airblast TNT equivalence for a range of commercial blasting explosives [J]. Journal of Hazardous Materials, 2000, 79(1): 31–39. DOI: 10.1016/S0304-3894(00)00168-0.
  • 加载中
图(29) / 表(3)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  88
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2023-12-27
  • 网络出版日期:  2024-01-23
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回