Generation mechanism and propagation characteristics of blasting seismic waves on tunnel surface
-
摘要: 为了研究隧道表面爆破地震波的产生机制及传播规律,提出了隧道表面爆破振动平面应变理论模型,得到了隧道表面爆破振动场积分形式解;以龙南隧道爆破工程为背景,建立了有限元数值模型,通过现场测试验证了数值模拟与理论解答的准确性;提出了基于高分辨率Radon变换的隧道爆破地震波波场分离方法,结合理论解析与数值模拟得到了P波、S波、R波的传播特征,最后综合理论结果与波场分离结果提出了隧道爆破地震波作用分区。结果表明:隧道爆破产生P波、S波,R波在自由面迅速发育,3类波呈现指数衰减特征,S波衰减快于P波快于R波。随着爆心距的增大,垂直方向主要成分由S波转变为R波,水平方向主要成分由S波转变为P波,P波转变为R波。Ⅳ级围岩工况下,隧道爆破地震波作用分区为:隧道轴向距掌子面0~6.44 m为爆破近区,主导波型为水平S波;6.44~21.23 m为爆破中区,主导波型为水平P波;21.23 m外为爆破远区,主导波型为垂直R波。爆破分区分界点与单段最大药量呈线性关系,可通过爆破药量得到隧道爆破分区位置,用于隧道安全稳定性分析。Abstract: In tunnel blasting and excavation engineering, blasting vibration is the main harmful effect affecting safety and stability. In order to investigate the generation mechanism and propagation patterns of seismic waves resulting from blasting in tunnel contexts, a theoretical model based on plane strain conditions is developed to depict the tunnel surface vibration caused by blasting. Then, a solution in integral form is derived to describe the surface vibration field generated from tunnel blasting. Utilizing the Longnan tunnel blasting project as a contextual backdrop, a finite element numerical model is established to recreate the conditions. This allows for the validation of both the numerical simulations and theoretical solutions through on-site tests. To elucidate the propagation characteristics of distinct types of seismic waves resulting from blasting, a method adopting a high-resolution Radon transform approach is devised to separate the tunnel blasting seismic wave field. By combining theoretical analysis with numerical simulation, the propagation characteristics of P-waves, S-waves, and R-waves are ascertained. Further, by synthesizing theoretical results and wave field separation results, the seismic wave action partition of tunnel blasting is proposed. The results show that tunnel blasting excites P-waves and S-waves, while R-waves surge swiftly upon encountering the free surface. The triad of wave categories displays exponential attenuation tendencies, with S-waves demonstrating a swifter decay rate than P-waves, and P-waves outpacing R-waves in this regard. In terms of directional dominance, the main component in the vertical direction changes from S-wave to R-wave, and the main component in the horizontal direction changes from S-wave to P-wave, and then P-wave changes to R-wave. A detailed spatial analysis further elucidates this scenario. Under the working conditions of grade Ⅳ surrounding rock, the seismic wave action zone of tunnel blasting is as follows: the area of 0–6.44 m away from the tunnel axis to the tunnel face is regarded as the near area of blasting, where the dominant wave type is horizontal S-wave; the area of 6.44–21.23 m is regarded as the middle area of blasting, where the dominant wave type is horizontal P-wave; and the area beyond 21.23 m is regarded as blasting far zone, where the dominant wave type is vertical R-wave. In addition, a linear relationship exists between the boundary point of the blasting zone and the maximum amount of charge in a single section, and the position of the blasting zone in the tunnel can be obtained through the amount of blasting charge, which can be used for the analysis of the safety and stability of the tunnel.
-
表 1 数值模型材料参数
Table 1. Material parameters of the numerical model
结构 密度/(kg·m−3) 弹性模量/GPa 泊松比 屈服强度/MPa 切线模量/MPa Ⅳ级围岩 2300 4.00 0.31 5.0 2.2 初衬 2200 23.00 0.25 4.2 2.5 二衬 2500 32.00 0.20 6.0 2.4 -
[1] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722-2014 [S]. 北京: 中国标准出版社, 2015.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Safety regulations for blasting: GB 6722-2014 [S]. Beijing: Standards Press of China, 2015. [2] 唐海, 李海波. 反映高程放大效应的爆破振动公式研究 [J]. 岩土力学, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030.TANG H, LI H B. Study of blasting vibration formula of reflecting amplification effect on elevation [J]. Rock and Soil Mechanics, 2011, 32(3): 820–824. DOI: 10.3969/j.issn.1000-7598.2011.03.030. [3] 蒋楠. 露天转地下开采边坡爆破动力特性研究 [D]. 武汉: 中国地质大学, 2013: 30–32.JIANG N. Study on blasting dynamic characteristics of open pit to underground mining slope [D]. Wuhan: China University of Geosciences, 2013: 30–32. [4] 夏祥, 李俊如, 李海波, 等. 爆破荷载作用下岩体振动特征的数值模拟 [J]. 岩土力学, 2005, 26(1): 50–56. DOI: 10.3969/j.issn.1000-7598.2005.01.011.XIA X, LI J R, LI H B, et al. Udec modeling of vibration characteristics of jointed rock mass under explosion [J]. Rock and Soil Mechanics, 2005, 26(1): 50–56. DOI: 10.3969/j.issn.1000-7598.2005.01.011. [5] 夏文俊, 卢文波, 陈明, 等. 白鹤滩坝址柱状节理玄武岩爆破损伤质点峰值振速安全阈值研究 [J]. 岩石力学与工程学报, 2019, 38(S1): 2997–3007. DOI: 10.13722/j.cnki.jrme.2018.0036.XIA W J, LU W B, CHEN M, et al. Study on safety threshold of peak particle velocity about blasting damage of columnar jointed basalt rock mass in Baihetan Dam site [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2997–3007. DOI: 10.13722/j.cnki.jrme.2018.0036. [6] WU D, LI H B, FUKUDA D, et al. Development of a finite-discrete element method with finite-strain elasto-plasticity and cohesive zone models for simulating the dynamic fracture of rocks [J]. Computers and Geotechnics, 2023, 156: 105271. DOI: 10.1016/j.compgeo.2023.105271. [7] SHARPE J A. The production of elastic waves by explosion pressures: I. theory and empirical field observations [J]. Geophysics, 1942, 7(2): 144–154. DOI: 10.1190/1.1445002. [8] BLAKE JR F G. Spherical wave propagation in solid media [J]. The Journal of the Acoustical Society of America, 1952, 24(2): 211–215. DOI: 10.1121/1.1906882. [9] RICKER N. The form and laws of propagation of seismic wavelets [J]. Geophysics, 1953, 18(1): 10–40. DOI: 10.1190/1.1437843. [10] HEELAN P A. Radiation from a cylindrical source of finite length [J]. Geophysics, 1953, 18(3): 685–696. DOI: 10.1190/1.1437923. [11] JORDAN D W. The stress wave from a finite, cylindrical explosive source [J]. Journal of Mathematics and Mechanics, 1962, 11(4): 503–551. [12] ABO-ZENA A. Radiation from a finite cylindrical explosive source [J]. Geophysics, 1977, 42(7): 1384–1393. DOI: 10.1190/1.1440799. [13] LAMB H. I. On the propagation of tremors over the surface of an elastic solid [J]. Philosophical Transactions of the Royal Society A, 1904, 203(359): 1–42. [14] EASON G. The displacements produced in an elastic half-space by a suddenly applied surface force [J]. IMA Journal of Applied Mathematics, 1966, 2(4): 299–326. DOI: 10.1093/imamat/2.4.299. [15] 王小岗. 横观各向同性饱和地基三维瞬态Lamb问题 [J]. 岩土力学, 2011, 32(1): 253–260. DOI: 10.3969/j.issn.1000-7598.2011.01.040.WANG X G. Three-dimensional transient Lamb’s problem of transversely isotropic saturated soils [J]. Rock and Soil Mechanics, 2009, 32(1): 253–260. DOI: 10.3969/j.issn.1000-7598.2011.01.040. [16] 徐则民, 黄润秋. 岩爆与爆破的关系 [J]. 岩石力学与工程学报, 2003, 22(3): 414–419. DOI: 10.3321/j.issn:1000-6915.2003.03.014.XU Z M, HUANG R Q. Relationship between rock burst and blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(3): 414–419. DOI: 10.3321/j.issn:1000-6915.2003.03.014. [17] 王立安, 赵建昌, 侯小强, 等. 非均匀饱和半空间的Lamb问题 [J]. 岩土力学, 2020, 41(5): 1790–1798. DOI: 10.16285/j.rsm.2019.0591.WANG L A, ZHAO J C, HOU X Q, et al. Lamb problem for non-homogeneous saturated half-space [J]. Rock and Soil Mechanics, 2020, 41(5): 1790–1798. DOI: 10.16285/j.rsm.2019.0591. [18] 周红敏, 赵事成, 赵文清, 等. 基于改进的MEEMD的隧道掘进爆破振动信号去噪优化分析 [J]. 振动与冲击, 2023, 42(10): 74–81. DOI: 10.13465/j.cnki.jvs.2023.010.010.ZHOU H M, ZHAO S C, ZHAO W Q, et al. Vibration signal denoising optimization analysis in tunnel excavation based on improved MEEMD [J]. Journal of Vibration and Shock, 2023, 42(10): 74–81. DOI: 10.13465/j.cnki.jvs.2023.010.010. [19] 付晓强, 麻岩, 俞缙, 等. 隧道爆破振动信号时频谱增强优化分析 [J]. 矿业科学学报, 2023, 8(3): 348–356. DOI: 10.19606/j.cnki.jmst.2023.03.008.FU X Q, MA Y, YU J, et al. Optimization analysis of time frequency spectrum enhancement of tunnel blasting vibration signal [J]. Journal of Mining Science and Technology, 2023, 8(3): 348–356. DOI: 10.19606/j.cnki.jmst.2023.03.008. [20] 高启栋, 卢文波, 杨招伟, 等. 水平光面爆破激发地震波的成分及衰减特征 [J]. 爆炸与冲击, 2019, 39(8): 085201. DOI: 10.11883/bzycj-2018-0280.GAO Q D, LU W B, YANG Z W, et al. Components and attenuation of seismic wavesinduced by horizontal smooth blasting [J]. Explosion and Shock Waves, 2019, 39(8): 085201. DOI: 10.11883/bzycj-2018-0280. [21] 高启栋, 卢文波, 杨招伟, 等. 垂直孔爆破诱发地震波的成分构成及演化规律 [J]. 岩石力学与工程学报, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.GAO Q D, LU W B, YANG Z W, et al. Components and evolution laws of seismic waves induced by vertical-hole blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824. [22] 陈士海, 魏海霞, 杜荣强. 爆破震动信号的多分辨小波分析 [J]. 岩土力学, 2009, 30(S1): 135–139, 143. DOI: 10.3969/j.issn.1000-7598.2009.z1.027.CHEN S H, WEI H X, DU R Q. Multi-resolution wavelet analysis of blasting vibration signals [J]. Rock and Soil Mechanics, 2009, 30(S1): 135–139, 143. DOI: 10.3969/j.issn.1000-7598.2009.z1.027. [23] 杨年华. 爆破振动理论与测控技术 [M]. 北京: 中国铁道出版社, 2014: 112–116. [24] BIOT M A. Propagation of elastic waves in a cylindrical bore containing a fluid [J]. Journal of Applied Physics, 1952, 23(9): 997–1005. DOI: 10.1063/1.1702365. [25] MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. DOI: 10.1016/j.ijrmms.2007.12.002. [26] 尤金 D. Mathematica使用指南 [M]. 邓建松, 彭冉冉, 译. 北京: 科学出版社, 2002: 204–209. [27] 周海孝, 高启栋, 王亚琼, 等. 隧洞全断面开挖中不同爆破孔作用边界及其诱发振动特性的比较分析 [J]. 岩石力学与工程学报, 2022, 41(4): 785–797. DOI: 10.13722/j.cnki.jrme.2021.1078.ZHOU H X, GAO Q D, WANG Y Q, et al. Comparative analysis of vibration characteristics induced by different kinds of boreholes and their blasting boundaries during full-face tunnel blasting excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 785–797. DOI: 10.13722/j.cnki.jrme.2021.1078. [28] 杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.YANG J H, LU W B, CHEN M, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07. [29] 黄德智. 基于反射波信号相似性的地震波场分离方法研究 [D]. 长春: 吉林大学, 2021: 11–13.HUANG D Z. Study on the wave field separation of seismic based on the similarity of reflected wave signal [D]. Changchun: Jilin University, 2021: 11–13. [30] TRAD D, ULRYCH T, SACCHI M. Latest views of the sparse Radon transform [J]. Geophysics, 2003, 68(10): 386–399. DOI: 10.1190/1.1543224. 期刊类型引用(20)
1. 党发宁,王宝生,李玉涛,任劼,方建银. 冲击速度及骨料率对混凝土动强度的影响研究. 西安建筑科技大学学报(自然科学版). 2024(01): 7-13+22 . 百度学术
2. 熊凌浩,周传波,蒋楠,王腾,蒙贤忠. 大断面隧道新浇二衬混凝土爆破振动控制安全阈值. 工程爆破. 2023(01): 1-9 . 百度学术
3. 庄金平,任凯,杨尊煌. 早龄期持续受荷对成熟混凝土梁受弯性能影响试验研究. 混凝土. 2023(11): 49-52+57 . 百度学术
4. 王亚强,李二宝,王骞,漆斌,汪熙,杨海涛. 爆破振动对混凝土初凝期强度影响规律及降震试验研究. 中国矿业. 2022(03): 124-130 . 百度学术
5. 潘长春. 基于爆破振动的新浇混凝土现行安全标准探讨. 科技创新与应用. 2021(08): 75-77+81 . 百度学术
6. 缪琪,赵章华,俞海杰,孙旭峰. 水厂新浇构筑物在基坑爆破时的抗裂性能研究. 山西建筑. 2021(20): 40-43 . 百度学术
7. 谢立栋,东兆星,姜慧,朱炯,齐燕军. 早龄期混凝土动强度应变率系数的统计方法. 兵工学报. 2021(S1): 159-166 . 百度学术
8. 陈秋南,贺泳超,邹根,李君杰,周相识,周光裕. 爆破施工对隧道二衬结构影响的试验研究. 铁道科学与工程学报. 2020(03): 676-681 . 百度学术
9. 杨小林,刘宝,吴礼报. 振动荷载作用下新浇混凝土损伤累积规律试验研究. 混凝土. 2020(09): 27-30+36 . 百度学术
10. 叶红宇,杨小林,卓越. 基于损伤累积的爆破振动主频衰减规律试验研究. 矿业研究与开发. 2019(04): 92-96 . 百度学术
11. 杨小林,李拴杰,褚怀保,姚智慧,杨杰,刘宝. 多次振动荷载作用下新浇混凝土超声波波速变化规律试验研究. 河南理工大学学报(自然科学版). 2018(03): 124-128 . 百度学术
12. 褚怀保,杨小林,叶红宇,梁为民,余永强,魏海霞. 隧道衬砌混凝土爆破损伤累积规律试验研究. 铁道学报. 2018(03): 132-136 . 百度学术
13. 褚怀保,吴礼报,杨小林. 振动荷载作用对新浇混凝土强度与耐久性影响试验研究. 硅酸盐通报. 2018(09): 2919-2923 . 百度学术
14. 褚怀保,杨小林,叶红宇,吴礼报. 新浇混凝土爆破振动损伤累积规律模拟试验研究. 煤炭学报. 2018(09): 2469-2475 . 百度学术
15. 张宏兵. 面向爆破应力波小净距隧道混凝土安全振动标准研究. 湖南交通科技. 2017(03): 180-184 . 百度学术
16. 潘慧敏,赵庆新,付军. 早龄期混凝土受扰性能研究进展. 硅酸盐通报. 2017(01): 64-70 . 百度学术
17. 褚怀保,吴礼报,杨小林,叶红宇,李栓杰,赵禹. 新浇混凝土爆破振动损伤累积机制试验研究. 中国安全科学学报. 2017(09): 69-73 . 百度学术
18. 吴帅峰,王戈,袁东凯,刘殿书. 爆破振动对新浇混凝土影响的试验研究. 振动与冲击. 2017(02): 39-44+88 . 百度学术
19. 戴思南,吴新霞,李广平. 结构尺寸与龄期对混凝土爆破振动响应的影响. 爆破. 2015(01): 131-134+150 . 百度学术
20. 罗福友,邱子华,周浩仓,潘昌义,罗福龙,杨康. 沟槽爆破参数优化及成本分析. 江西理工大学学报. 2015(03): 58-63 . 百度学术
其他类型引用(12)
-