非均匀当量比对旋转爆震燃烧室性能影响的三维数值模拟研究

刘事成 高春雨 周胜兵

刘事成, 高春雨, 周胜兵. 非均匀当量比对旋转爆震燃烧室性能影响的三维数值模拟研究[J]. 爆炸与冲击, 2024, 44(5): 052101. doi: 10.11883/bzycj-2023-0220
引用本文: 刘事成, 高春雨, 周胜兵. 非均匀当量比对旋转爆震燃烧室性能影响的三维数值模拟研究[J]. 爆炸与冲击, 2024, 44(5): 052101. doi: 10.11883/bzycj-2023-0220
LIU Shicheng, GAO Chunyu, ZHOU Shengbing. Three-dimensional numerical study on influences of uneven equivalence ratio on performances of a rotating detonation combustor[J]. Explosion And Shock Waves, 2024, 44(5): 052101. doi: 10.11883/bzycj-2023-0220
Citation: LIU Shicheng, GAO Chunyu, ZHOU Shengbing. Three-dimensional numerical study on influences of uneven equivalence ratio on performances of a rotating detonation combustor[J]. Explosion And Shock Waves, 2024, 44(5): 052101. doi: 10.11883/bzycj-2023-0220

非均匀当量比对旋转爆震燃烧室性能影响的三维数值模拟研究

doi: 10.11883/bzycj-2023-0220
基金项目: 博士后创新人才支持计划(BX.20200070);中央高校基本科研业务费专项资金(2022CDJXY-012)
详细信息
    作者简介:

    刘事成(1993- ),男,硕士,助理工程师,sgyllsc@sina.com

    通讯作者:

    周胜兵(1992- ),男,博士,助理研究员,zhounjust@163.com

  • 中图分类号: O381

Three-dimensional numerical study on influences of uneven equivalence ratio on performances of a rotating detonation combustor

  • 摘要: 为研究入口当量比的不均匀分布对旋转爆震燃烧室性能的影响,建立了当量比在入口环缝的径向或周向的函数模型,将模型公式代入组分质量分数与当量比的关系式,得到组分质量分数在径向或周向的分布函数。通过Fluent软件中的自定义函数工具,构造入口边界组分的分布函数,利用三维瞬态欧拉方程模拟了C10H22/air旋转爆震燃烧室中爆震波的传播过程及流场特性,对比了不同当量比分布下爆震波及旋转爆震燃烧室性能参数的变化特征。结果表明:入口当量比的不均匀分布会影响爆震波的传播特性;当量比为0.4~1.6且沿径向非均匀分布时,随着入口面中线位置当量比的增大,爆震波的高度减小;当量比为0.4~1.6且沿周向非均匀分布时,随着变化周期数的增加,爆震波的高度几乎不受影响;当量比的不均匀分布会削弱旋转爆震燃烧室的增压效果和温升效果,沿径向不均匀分布的情况相较于沿周向不均匀分布的情况,影响更明显;旋转爆震燃烧室内,爆震波的诱导和反应区并非严格位于前导激波的正后方,而是位于前导激波的斜后方,且在曲率的影响下,在靠近燃烧室外壁面的区域,前导激波沿中径圆柱面的圆周线传播。
  • 图  1  旋转爆震燃烧室的剖面图及其入口坐标(单位:m)

    Figure  1.  Profile chart of the rotating detonation combustor and the coordinate of its inlet (unit in m)

    图  2  不同工况下当量比沿入口径向分布函数

    Figure  2.  Functions of equivalence ratio distribution along the inlet radial direction under working conditions

    图  3  工况V1和V2下当量比沿入口周向的分布函数

    Figure  3.  Functions of equivalence ratio distribution along the inlet circular direction under working conditions V1 and V2

    图  4  V3和V4工况下当量比沿入口周向的分布函数

    Figure  4.  Functions of equivalence ratio distribution along the inlet circular direction under working conditions V3 and V4

    图  5  以工况V3为例,3种网格尺寸下得到的压力峰值曲线

    Figure  5.  Peak pressure history curves obtained under three grid sizesby taking working condition V3 as an example

    图  6  RDC入口组分质量分数的分布

    Figure  6.  Mass fraction distributions of components in the inlet of an RDC

    图  7  流场温度云图结构的对比

    Figure  7.  Comparison of flow field temperature cloud image structures

    图  8  压力和温度随时间的变化

    Figure  8.  Variations of pressure and temperature with time

    图  9  工况U1~U4下的温度云图

    Figure  9.  Temperature cloud maps under working conditions U1-U4

    图  10  工况U1~U4下的压力云图

    Figure  10.  Pressure cloud maps under working conditions U1 - U4

    图  11  工况U1~U4下爆震波传播速度的变化

    Figure  11.  Variation of detonation wave velocity with working conditions U1 to U4

    图  12  工况U1下燃烧室的爆震波压力和温度分布

    Figure  12.  Pressure and temperature distributions of detonation wave in an RDC under working condition U1

    图  13  工况U2下燃烧室的爆震波压力和温度分布

    Figure  13.  Pressure and temperature distributions of detonation wave in an RDC under working condition U2

    图  14  工况U3下燃烧室的爆震波压力和温度分布

    Figure  14.  Pressure and temperature distributions of detonation wave in an RDC under working condition U3

    图  15  工况U4下燃烧室的爆震波压力和温度分布

    Figure  15.  Pressure and temperature distributions of detonation wave in an RDC under working condition U4

    图  16  工况M下燃烧室的爆震波压力和温度分布

    Figure  16.  Pressure and temperature distributions of detonation wave in an RDC under working condition M

    图  17  工况U1~U4的爆震波峰值压力和温度的变化

    Figure  17.  Variations of peak pressure and peak temperature of detonation wave with working conditions U1 to U4

    图  18  工况U1~U4的燃烧室增压比和温升比的变化

    Figure  18.  Variations of pressurization ratio and heating ratioin an RDC with working conditions U1 to U4

    图  19  当量比径向分布的燃烧室加权总压的分布

    Figure  19.  Distribution of weighted average total pressure in an RDC with the distribution of equivalence ratio along the radial direction

    图  20  当量比径向分布的燃烧室加权总温

    Figure  20.  Distributions of weighted average total temperature in RDCs with the distribution of equivalence ratio along the radial direction

    图  21  当量比径向分布的燃烧室加权马赫数的分布

    Figure  21.  Distributions of weighted average mach number in RDCs with the distribution of equivalence ratio along the radial direction

    图  22  工况V1~V4下的温度云图

    Figure  22.  Temperature cloud maps under working conditions V1-V4

    图  23  工况V1~V4的压力云图

    Figure  23.  Pressure cloud maps under working conditions V1-V4

    图  24  工况V1~V4下爆震波速度的变化

    Figure  24.  Variation of detonation wave velocity with working conditions V1 to V4

    图  25  工况V1下燃烧室内爆震波的压力和温度的分布

    Figure  25.  Pressure and temperature distributions of detonation wave in an RDC under working condition V1

    图  26  工况V2下燃烧室内爆震波的压力和温度的分布

    Figure  26.  Pressure and temperature distributions of detonation wave in an RDC under working conditions V2

    图  27  工况V3下燃烧室内爆震波的压力和温度的分布

    Figure  27.  Pressure and temperature distributions of detonation wave in an RDC under working condition V3

    图  28  工况V4下燃烧室内爆震波的压力和温度的分布

    Figure  28.  Pressure and temperature distributions of detonation wave in an RDC under working condition V4

    图  29  工况V1~V4爆震波峰值压力和温度的变化

    Figure  29.  Variations of peak pressure and peak temperature of detonation wave with working conditions V1 to V4

    图  30  工况V1~V4的燃烧室增压比和温升比的变化

    Figure  30.  Variation of pressurization ratio and heating ratio of detonation wave with working conditions V1 to V4

    图  31  当量比周向分布的燃烧室加权总压

    Figure  31.  RDC weighted average total pressure with the distribution of equivalence ratio along circular direction

    图  32  当量比周向分布的燃烧室加权总温

    Figure  32.  RDC weighted average total temperature with the distribution of equivalence ratio along circular direction

    图  33  当量比周向分布的燃烧室加权马赫数

    Figure  33.  RDC weighted average mach number with the distribution of equivalence ratio along circular direction

    表  1  当量比沿径向分布的函数式

    Table  1.   Functions of equivalence ratio distribution along the radial direction

    工况 函数类型 当量比表达式(r单位:m) S/m2 βS
    U1 递增正比例函数 $\varphi = 48r - 4.4$ 0.0181 1.0226
    U2 递减正比例函数 $\varphi = - 48r + 6.4$ 0.0173 0.9774
    U3 递增抛物线函数 $\varphi = 1\;920{r^2} - 384r + 19.6$ 0.0145 0.8192
    U4 递减抛物线函数 $\varphi = - 1\;920{r^2} + 384r - 17.6$ 0.0208 1.1751
    下载: 导出CSV

    表  2  当量比沿周向分布的函数式

    Table  2.   Functions of equivalence ratio distribution along the circular direction

    工况 函数类型 当量比表达式(θ单位:rad) S/m2 βS
    V1 90周期余弦函数 $\varphi = 0.6\cos \left( {90\theta } \right) + 1$ 0.0177 1
    V2 60周期余弦函数 $\varphi = 0.6\cos \left( {60\theta } \right) + 1$ 0.0177 1
    V3 90周期分段函数 $ \varphi = \left\{ {\begin{array}{*{20}{l}} 1.6&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}} 4 {\text{<}}2 \\ 1&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}} 4 = 2 \\ 0.4&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}} 4 {\text{>}} 2\end{array}} \right. $ 0.0177 1
    V4 60周期分段函数 $\varphi = \left\{ {\begin{array}{*{20}{l}} 1.6&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}}6 {\text{<}}3 \\ 1&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}}6 = 3 \\ 0.4&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}}6 {\text{>}} 3 \end{array}} \right.$ 0.0177 1
    下载: 导出CSV
  • [1] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展 [J]. 推进技术, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109.

    WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines [J]. Journal of Propulsion Technology, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109.
    [2] 秦亚欣. 旋转爆震发动机研制新进展 [J]. 航空动力, 2022(3): 16–19.

    QIN Y X. New development progress of rotating detonation engine [J]. Aerospace Power, 2022(3): 16–19.
    [3] ANAND V, GEORGE A S, DRISCOLL R, et al. Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor [J]. Experimental Thermal and Fluid Science, 2016, 70: 408–416. DOI: 10.1016/j.expthermflusci.2015.10.007.
    [4] GEORGE A S, RANDALL S, ANAND V, et al. Characterization of initiator dynamics in a rotating detonation combustor [J]. Experimental Thermal and Fluid Science, 2016, 72: 171–181. DOI: 10.1016/j.expthermflusci.2015.11.002.
    [5] BURKE R, REZZAG T, DUNN I, et al. The effect of premixed stratification on the wave dynamics of a rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2021, 46(54): 27816–27826. DOI: 10.1016/J.IJHYDENE.2021.06.003.
    [6] NAIR A P, LEE D D, PINEDA D I, et al. Methane-oxygen rotating detonation exhaust thermodynamics with variable mixing, equivalence ratio, and mass flux [J]. Aerospace Science and Technology, 2021, 113: 106683. DOI: 10.1016/J.AST.2021.106683.
    [7] SALVADORI M, TUDISCO P, RANJAN D, et al. Numerical investigation of mass flow rate effects on multiplicity of detonation waves within a H2/air rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2022, 47(6): 4155–4170. DOI: 10.1016/J.IJHYDENE.2021.10.270.
    [8] MIKHALCHENKO E V, NIKITIN V F, PHYLIPPOV Y G, et al. Numerical study of rotating detonation onset in engines [J]. Shock Waves, 2021, 31(7): 763–776. DOI: 10.1007/S00193-021-01051-5.
    [9] JIANG H Y, HUANG Y. Numerical investigation of non-premixed H2-air rotating detonation combustor with different equivalence ratios [J]. Journal of Physics: Conference Series, 2022, 2235: 012011. DOI: 10.1088/1742-6596/2235/1/012011.
    [10] 王顺利, 吴云, 金迪, 等. 不同当量比下喷管对旋转爆震特性的影响研究 [J]. 爆炸与冲击, 2020, 40(10): 102102. DOI: 10.11883/bzycj-2019-0481.

    WANG S L, WU Y, JIN D, et al. Effects of nozzles on performance of rotating detonation at different equivalence ratios [J]. Explosion and Shock Waves, 2020, 40(10): 102102. DOI: 10.11883/bzycj-2019-0481.
    [11] 马元, 邹刚, 于光辉. 当量比和质量通量对两相旋转爆震波影响数值研究 [J]. 工业技术创新, 2020, 7(6): 112–116. DOI: 10.14103/j.issn.2095-8412.2020.06.020.

    MA Y, ZOU G, YU G H. Numerical study on the influence of equivalent ratio and mass flux on two-phase rotating detonation wave [J]. Industrial Technology Innovation, 2020, 7(6): 112–116. DOI: 10.14103/j.issn.2095-8412.2020.06.020.
    [12] 王迪, 周进, 林志勇. 煤油两相连续旋转爆震燃烧室工作特性试验研究 [J]. 推进技术, 2017, 38(2): 471–480. DOI: 10.13675/j.cnki.tjjs.2017.02.028.

    WANG D, ZHOU J, LIN Z Y. Experimental investigation on operating characteristics of two-phase continuous rotating detonation combustor fueled by kerosene [J]. Journal of Propulsion Technology, 2017, 38(2): 471–480. DOI: 10.13675/j.cnki.tjjs.2017.02.028.
    [13] 马虎, 张义宁, 杨成龙, 等. 燃料分布对旋转爆震波传播特性影响 [J]. 航空动力学报, 2019, 34(3): 513–520. DOI: 10.13224/j.cnki.jasp.2019.03.001.

    MA H, ZHANG Y N, YANG C L, et al. Effects of fuel distribution on propagation of rotating detonation wave [J]. Journal of Aerospace Power, 2019, 34(3): 513–520. DOI: 10.13224/j.cnki.jasp.2019.03.001.
    [14] 焦中天, 王永佳, 李伟, 等. 燃料喷孔数对非预混旋转爆震起爆过程的影响 [J]. 火箭推进, 2021, 47(5): 22–34. DOI: 10.3969/j.issn.1672-9374.2021.05.003.

    JIAO Z T, WANG Y J, LI W, et al. Effects of the number of fuel injection orifices on rotating detonation initiation process under non-premixed conditions [J]. Journal of Rocket Propulsion, 2021, 47(5): 22–34. DOI: 10.3969/j.issn.1672-9374.2021.05.003.
    [15] 卓长飞, 武晓松, 封锋. 底部排气弹三维湍流燃烧的数值模拟 [J]. 固体火箭技术, 2013, 36(6): 720–726. DOI: 10.7673/j.issn.1006-2793.2013.06.003.

    ZHUO C F, WU X S, FENG F. Numerical simulation of three-dimensional turbulent combustion of the base bleed projectile [J]. Journal of Solid Rocket Technology, 2013, 36(6): 720–726. DOI: 10.7673/j.issn.1006-2793.2013.06.003.
    [16] 卓长飞, 武晓松, 封锋. 超声速流动中底部排气减阻的数值研究 [J]. 兵工学报, 2014, 35(1): 18–26. DOI: 10.3969/j.issn.1000-1093.2014.01.003.

    ZHUO C F, WU X S, FENG F. Numerical research on drag reduction of base bleed in supersonic flow [J]. Acta Armamentarii, 2014, 35(1): 18–26. DOI: 10.3969/j.issn.1000-1093.2014.01.003.
    [17] 李帅, 王栋, 严宇, 等. 旋转爆震燃烧室轴向和周向长度对其出口流场压力和温度的影响 [J]. 爆炸与冲击, 2018, 38(4): 777–784. DOI: 10.11883/bzycj-2016-0395.

    LI S, WANG D, YAN Y, et al. Effect of axial and circumferential length of rotating detonation combustor on pressure and temperature of outlet flow field [J]. Explosion and Shock Waves, 2018, 38(4): 777–784. DOI: 10.11883/bzycj-2016-0395.
    [18] 苟冰冰, 王安, 王静波, 等. 正癸烷四步高温总包机理构建与验证 [J]. 推进技术, 2022, 43(11): 415–423. DOI: 10.13675/j.cnki.tjjs.210434.

    GOU B B, WANG A, WANG J B, et al. A four-step global kinetic mechanism for high-temperature combustion of n-decane [J]. Journal of Propulsion Technology, 2022, 43(11): 415–423. DOI: 10.13675/j.cnki.tjjs.210434.
    [19] 吴明亮, 郑权, 续晗, 等. 氢气占比对氢气-煤油-空气旋转爆轰波传播特性的影响 [J]. 兵工学报, 2022, 43(1): 86–97. DOI: 10.3969/j.issn.1000-1093.2022.01.010.

    WU M L, ZHENG Q, XU H, et al. The influence of hydrogen proportion on the propagation characteristics of hydrogen-kerosene-air rotating detonation waves [J]. Acta Armamentarii, 2022, 43(1): 86–97. DOI: 10.3969/j.issn.1000-1093.2022.01.010.
    [20] 夏镇娟, 武晓松, 马虎, 等. 圆盘结构下旋转爆震波的二维数值研究 [J]. 推进技术, 2017, 38(6): 1409–1418. DOI: 10.13675/j.cnki.tjjs.2017.06.026.

    XIA Z J, WU X S, MA H, et al. Two-dimensional numerical simulation of rotating detonation wave in plane-radial structure [J]. Journal of Propulsion Technology, 2017, 38(6): 1409–1418. DOI: 10.13675/j.cnki.tjjs.2017.06.026.
    [21] 马虎, 封锋, 武晓松, 等. 压力条件对旋转爆震发动机的影响 [J]. 弹道学报, 2012, 24(4): 94–98. DOI: 10.3969/j.issn.1004-499X.2012.04.021.

    MA H, FENG F, WU X S, et al. Effect of pressure condition on rotating detonation engine [J]. Journal of Ballistics, 2012, 24(4): 94–98. DOI: 10.3969/j.issn.1004-499X.2012.04.021.
    [22] 郑权, 翁春生, 白桥栋. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究 [J]. 推进技术, 2015, 36(6): 947–952. DOI: 10.13675/j.cnki.tjjs.2015.06.020.

    ZHENG Q, WENG C S, BAI Q D. Experimental study on effects of equivalence ratio on detonation characteristics of liquid-fueled rotating detonation engine [J]. Journal of Propulsion Technology, 2015, 36(6): 947–952. DOI: 10.13675/j.cnki.tjjs.2015.06.020.
    [23] 范良忠, 史强, 林伟, 等. 氢氧旋转爆震传播特性研究 [J]. 推进技术, 2022, 43(11): 236–245. DOI: 10.13675/j.cnki.tjjs.210605.

    FAN L Z, SHI Q, LIN W, et al. Propagation characteristics of hydrogen/oxygen rotating detonation [J]. Journal of Propulsion Technology, 2022, 43(11): 236–245. DOI: 10.13675/j.cnki.tjjs.210605.
  • 加载中
图(33) / 表(2)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  31
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-27
  • 修回日期:  2024-03-20
  • 网络出版日期:  2024-03-21
  • 刊出日期:  2024-05-08

目录

    /

    返回文章
    返回