Three-dimensional numerical study on influences of uneven equivalence ratio on performances of a rotating detonation combustor
-
摘要: 为研究入口当量比的不均匀分布对旋转爆震燃烧室性能的影响,建立了当量比在入口环缝的径向或周向的函数模型,将模型公式代入组分质量分数与当量比的关系式,得到组分质量分数在径向或周向的分布函数。通过Fluent软件中的自定义函数工具,构造入口边界组分的分布函数,利用三维瞬态欧拉方程模拟了C10H22/air旋转爆震燃烧室中爆震波的传播过程及流场特性,对比了不同当量比分布下爆震波及旋转爆震燃烧室性能参数的变化特征。结果表明:入口当量比的不均匀分布会影响爆震波的传播特性;当量比为0.4~1.6且沿径向非均匀分布时,随着入口面中线位置当量比的增大,爆震波的高度减小;当量比为0.4~1.6且沿周向非均匀分布时,随着变化周期数的增加,爆震波的高度几乎不受影响;当量比的不均匀分布会削弱旋转爆震燃烧室的增压效果和温升效果,沿径向不均匀分布的情况相较于沿周向不均匀分布的情况,影响更明显;旋转爆震燃烧室内,爆震波的诱导和反应区并非严格位于前导激波的正后方,而是位于前导激波的斜后方,且在曲率的影响下,在靠近燃烧室外壁面的区域,前导激波沿中径圆柱面的圆周线传播。Abstract: To investigate the effects of the inlet equivalence ratio distribution on the performance of a rotating detonation combustor (RDC), the radial or circumferential function model of equivalence ratio at the entrance of the RDC was established. The distribution function of component mass fraction in radial or circumferential direction was obtained by substituting the function model of equivalence ratio into the function of component mass fraction and equivalence ratio. The distribution function of entry boundary components was constructed by the user-defined function tool in the Fluent code. A three-dimensional transient Euler equation was employed to simulate the propagation process and flow field characteristics of detonation waves in a C10H22/air RDC, and the characteristics parameters of the detonation waves and RDC were compared under different equivalence-ratio distributions. The results show that the uneven distribution of the inlet equivalence ratio will affect the characteristics of the detonation waves. When the equivalence ratio ranges from 0.4 to 1.6 and is not uniformly distributed along the radial direction, the height of the detonation wave decreases with the increase of equivalence ratio at the midline of the inlet surface. When the equivalence ratio ranges from 0.4 to 1.6 and the distribution is non-uniform in the circumferential direction, the height of the detonation wave is almost not affected with the increase of the number of changing periods. The uneven distribution of equivalence ratio will weaken the pressure-gain effect and temperature rise effect of the RDC, and the influence of the uneven distribution of equivalence ratio along the radial direction is more obvious than that along the circumferential direction. In the RDC, the induction and reactant region of detonation wave is not strictly behind the leading shock wave, but is located at the oblique rear of the leading shock wave, and under the influence of curvature, the leading shock wave propagates along the circumference of the middle diameter cylinder near the outer wall of the RDC.
-
表 1 当量比沿径向分布的函数式
Table 1. Functions of equivalence ratio distribution along the radial direction
工况 函数类型 当量比表达式(r单位:m) S/m2 βS U1 递增正比例函数 $\varphi = 48r - 4.4$ 0.0181 1.0226 U2 递减正比例函数 $\varphi = - 48r + 6.4$ 0.0173 0.9774 U3 递增抛物线函数 $\varphi = 1\;920{r^2} - 384r + 19.6$ 0.0145 0.8192 U4 递减抛物线函数 $\varphi = - 1\;920{r^2} + 384r - 17.6$ 0.0208 1.1751 表 2 当量比沿周向分布的函数式
Table 2. Functions of equivalence ratio distribution along the circular direction
工况 函数类型 当量比表达式(θ单位:rad) S/m2 βS V1 90周期余弦函数 $\varphi = 0.6\cos \left( {90\theta } \right) + 1$ 0.0177 1 V2 60周期余弦函数 $\varphi = 0.6\cos \left( {60\theta } \right) + 1$ 0.0177 1 V3 90周期分段函数 $ \varphi = \left\{ {\begin{array}{*{20}{l}} 1.6&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}} 4 {\text{<}}2 \\ 1&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}} 4 = 2 \\ 0.4&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}} 4 {\text{>}} 2\end{array}} \right. $ 0.0177 1 V4 60周期分段函数 $\varphi = \left\{ {\begin{array}{*{20}{l}} 1.6&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}}6 {\text{<}}3 \\ 1&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}}6 = 3 \\ 0.4&\left( {\dfrac{{180}}{{\text{π}}}\theta } \right){\text{%}}6 {\text{>}} 3 \end{array}} \right.$ 0.0177 1 -
[1] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展 [J]. 推进技术, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109.WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines [J]. Journal of Propulsion Technology, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109. [2] 秦亚欣. 旋转爆震发动机研制新进展 [J]. 航空动力, 2022(3): 16–19.QIN Y X. New development progress of rotating detonation engine [J]. Aerospace Power, 2022(3): 16–19. [3] ANAND V, GEORGE A S, DRISCOLL R, et al. Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor [J]. Experimental Thermal and Fluid Science, 2016, 70: 408–416. DOI: 10.1016/j.expthermflusci.2015.10.007. [4] GEORGE A S, RANDALL S, ANAND V, et al. Characterization of initiator dynamics in a rotating detonation combustor [J]. Experimental Thermal and Fluid Science, 2016, 72: 171–181. DOI: 10.1016/j.expthermflusci.2015.11.002. [5] BURKE R, REZZAG T, DUNN I, et al. The effect of premixed stratification on the wave dynamics of a rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2021, 46(54): 27816–27826. DOI: 10.1016/J.IJHYDENE.2021.06.003. [6] NAIR A P, LEE D D, PINEDA D I, et al. Methane-oxygen rotating detonation exhaust thermodynamics with variable mixing, equivalence ratio, and mass flux [J]. Aerospace Science and Technology, 2021, 113: 106683. DOI: 10.1016/J.AST.2021.106683. [7] SALVADORI M, TUDISCO P, RANJAN D, et al. Numerical investigation of mass flow rate effects on multiplicity of detonation waves within a H2/air rotating detonation combustor [J]. International Journal of Hydrogen Energy, 2022, 47(6): 4155–4170. DOI: 10.1016/J.IJHYDENE.2021.10.270. [8] MIKHALCHENKO E V, NIKITIN V F, PHYLIPPOV Y G, et al. Numerical study of rotating detonation onset in engines [J]. Shock Waves, 2021, 31(7): 763–776. DOI: 10.1007/S00193-021-01051-5. [9] JIANG H Y, HUANG Y. Numerical investigation of non-premixed H2-air rotating detonation combustor with different equivalence ratios [J]. Journal of Physics: Conference Series, 2022, 2235: 012011. DOI: 10.1088/1742-6596/2235/1/012011. [10] 王顺利, 吴云, 金迪, 等. 不同当量比下喷管对旋转爆震特性的影响研究 [J]. 爆炸与冲击, 2020, 40(10): 102102. DOI: 10.11883/bzycj-2019-0481.WANG S L, WU Y, JIN D, et al. Effects of nozzles on performance of rotating detonation at different equivalence ratios [J]. Explosion and Shock Waves, 2020, 40(10): 102102. DOI: 10.11883/bzycj-2019-0481. [11] 马元, 邹刚, 于光辉. 当量比和质量通量对两相旋转爆震波影响数值研究 [J]. 工业技术创新, 2020, 7(6): 112–116. DOI: 10.14103/j.issn.2095-8412.2020.06.020.MA Y, ZOU G, YU G H. Numerical study on the influence of equivalent ratio and mass flux on two-phase rotating detonation wave [J]. Industrial Technology Innovation, 2020, 7(6): 112–116. DOI: 10.14103/j.issn.2095-8412.2020.06.020. [12] 王迪, 周进, 林志勇. 煤油两相连续旋转爆震燃烧室工作特性试验研究 [J]. 推进技术, 2017, 38(2): 471–480. DOI: 10.13675/j.cnki.tjjs.2017.02.028.WANG D, ZHOU J, LIN Z Y. Experimental investigation on operating characteristics of two-phase continuous rotating detonation combustor fueled by kerosene [J]. Journal of Propulsion Technology, 2017, 38(2): 471–480. DOI: 10.13675/j.cnki.tjjs.2017.02.028. [13] 马虎, 张义宁, 杨成龙, 等. 燃料分布对旋转爆震波传播特性影响 [J]. 航空动力学报, 2019, 34(3): 513–520. DOI: 10.13224/j.cnki.jasp.2019.03.001.MA H, ZHANG Y N, YANG C L, et al. Effects of fuel distribution on propagation of rotating detonation wave [J]. Journal of Aerospace Power, 2019, 34(3): 513–520. DOI: 10.13224/j.cnki.jasp.2019.03.001. [14] 焦中天, 王永佳, 李伟, 等. 燃料喷孔数对非预混旋转爆震起爆过程的影响 [J]. 火箭推进, 2021, 47(5): 22–34. DOI: 10.3969/j.issn.1672-9374.2021.05.003.JIAO Z T, WANG Y J, LI W, et al. Effects of the number of fuel injection orifices on rotating detonation initiation process under non-premixed conditions [J]. Journal of Rocket Propulsion, 2021, 47(5): 22–34. DOI: 10.3969/j.issn.1672-9374.2021.05.003. [15] 卓长飞, 武晓松, 封锋. 底部排气弹三维湍流燃烧的数值模拟 [J]. 固体火箭技术, 2013, 36(6): 720–726. DOI: 10.7673/j.issn.1006-2793.2013.06.003.ZHUO C F, WU X S, FENG F. Numerical simulation of three-dimensional turbulent combustion of the base bleed projectile [J]. Journal of Solid Rocket Technology, 2013, 36(6): 720–726. DOI: 10.7673/j.issn.1006-2793.2013.06.003. [16] 卓长飞, 武晓松, 封锋. 超声速流动中底部排气减阻的数值研究 [J]. 兵工学报, 2014, 35(1): 18–26. DOI: 10.3969/j.issn.1000-1093.2014.01.003.ZHUO C F, WU X S, FENG F. Numerical research on drag reduction of base bleed in supersonic flow [J]. Acta Armamentarii, 2014, 35(1): 18–26. DOI: 10.3969/j.issn.1000-1093.2014.01.003. [17] 李帅, 王栋, 严宇, 等. 旋转爆震燃烧室轴向和周向长度对其出口流场压力和温度的影响 [J]. 爆炸与冲击, 2018, 38(4): 777–784. DOI: 10.11883/bzycj-2016-0395.LI S, WANG D, YAN Y, et al. Effect of axial and circumferential length of rotating detonation combustor on pressure and temperature of outlet flow field [J]. Explosion and Shock Waves, 2018, 38(4): 777–784. DOI: 10.11883/bzycj-2016-0395. [18] 苟冰冰, 王安, 王静波, 等. 正癸烷四步高温总包机理构建与验证 [J]. 推进技术, 2022, 43(11): 415–423. DOI: 10.13675/j.cnki.tjjs.210434.GOU B B, WANG A, WANG J B, et al. A four-step global kinetic mechanism for high-temperature combustion of n-decane [J]. Journal of Propulsion Technology, 2022, 43(11): 415–423. DOI: 10.13675/j.cnki.tjjs.210434. [19] 吴明亮, 郑权, 续晗, 等. 氢气占比对氢气-煤油-空气旋转爆轰波传播特性的影响 [J]. 兵工学报, 2022, 43(1): 86–97. DOI: 10.3969/j.issn.1000-1093.2022.01.010.WU M L, ZHENG Q, XU H, et al. The influence of hydrogen proportion on the propagation characteristics of hydrogen-kerosene-air rotating detonation waves [J]. Acta Armamentarii, 2022, 43(1): 86–97. DOI: 10.3969/j.issn.1000-1093.2022.01.010. [20] 夏镇娟, 武晓松, 马虎, 等. 圆盘结构下旋转爆震波的二维数值研究 [J]. 推进技术, 2017, 38(6): 1409–1418. DOI: 10.13675/j.cnki.tjjs.2017.06.026.XIA Z J, WU X S, MA H, et al. Two-dimensional numerical simulation of rotating detonation wave in plane-radial structure [J]. Journal of Propulsion Technology, 2017, 38(6): 1409–1418. DOI: 10.13675/j.cnki.tjjs.2017.06.026. [21] 马虎, 封锋, 武晓松, 等. 压力条件对旋转爆震发动机的影响 [J]. 弹道学报, 2012, 24(4): 94–98. DOI: 10.3969/j.issn.1004-499X.2012.04.021.MA H, FENG F, WU X S, et al. Effect of pressure condition on rotating detonation engine [J]. Journal of Ballistics, 2012, 24(4): 94–98. DOI: 10.3969/j.issn.1004-499X.2012.04.021. [22] 郑权, 翁春生, 白桥栋. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究 [J]. 推进技术, 2015, 36(6): 947–952. DOI: 10.13675/j.cnki.tjjs.2015.06.020.ZHENG Q, WENG C S, BAI Q D. Experimental study on effects of equivalence ratio on detonation characteristics of liquid-fueled rotating detonation engine [J]. Journal of Propulsion Technology, 2015, 36(6): 947–952. DOI: 10.13675/j.cnki.tjjs.2015.06.020. [23] 范良忠, 史强, 林伟, 等. 氢氧旋转爆震传播特性研究 [J]. 推进技术, 2022, 43(11): 236–245. DOI: 10.13675/j.cnki.tjjs.210605.FAN L Z, SHI Q, LIN W, et al. Propagation characteristics of hydrogen/oxygen rotating detonation [J]. Journal of Propulsion Technology, 2022, 43(11): 236–245. DOI: 10.13675/j.cnki.tjjs.210605.