冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理

叶海旺 钱正昆 雷涛 温颖 李睿

叶海旺, 钱正昆, 雷涛, 温颖, 李睿. 冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理[J]. 爆炸与冲击, 2023, 43(12): 123102. doi: 10.11883/bzycj-2023-0223
引用本文: 叶海旺, 钱正昆, 雷涛, 温颖, 李睿. 冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理[J]. 爆炸与冲击, 2023, 43(12): 123102. doi: 10.11883/bzycj-2023-0223
YE Haiwang, QIAN Zhengkun, LEI Tao, WEN Ying, LI Rui. Bedding effect and macro-micro mechanism of graphite ore dynamic mechanical properties under impact loads[J]. Explosion And Shock Waves, 2023, 43(12): 123102. doi: 10.11883/bzycj-2023-0223
Citation: YE Haiwang, QIAN Zhengkun, LEI Tao, WEN Ying, LI Rui. Bedding effect and macro-micro mechanism of graphite ore dynamic mechanical properties under impact loads[J]. Explosion And Shock Waves, 2023, 43(12): 123102. doi: 10.11883/bzycj-2023-0223

冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理

doi: 10.11883/bzycj-2023-0223
基金项目: 国家重点研发计划( 2020YFC1909602,2021YFC2902901);湖北省重点研发计划(2021BCA152)
详细信息
    作者简介:

    叶海旺(1971- ),男,博士,教授,博士生导师,yehaiwang369@hotmail.com

    通讯作者:

    雷 涛(1983- ),男,博士,讲师,leitao539@163.com

  • 中图分类号: O347.3

Bedding effect and macro-micro mechanism of graphite ore dynamic mechanical properties under impact loads

  • 摘要: 为探究冲击荷载作用下层理对石墨矿石动力学特性的影响规律,采用直径为50 mm 的分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)系统,对0°、45°和90°层理角度的石墨矿石开展了不同冲击荷载(0.3、0.4和0.5 MPa)下的动态压缩实验,并结合高速摄影和电子扫描技术分析了不同层理角度石墨矿石的动态力学特性和冲击破坏模式。研究结果表明:石墨矿石中矿物多呈同形粒状定向排列,接触界限不规则,白云母和石英含量较高,与石墨伴生,沿层理面富集;层理面的存在对石墨矿石的力学性质存在劣化作用,45°层理劣化作用最强;能耗特性随层理角度增大呈U形变化,与强度特征相似;同一应变率下,矿石破碎尺寸与能耗密度具有明显的相关性,0°层理破碎平均尺寸较小,能耗密度较大,45°层理破碎后块度最大,能耗密度最小;受外力作用时,石墨鳞片不仅从内部断裂,也易被伴生矿物撕裂,随层理角度的增大,试样破坏形式可归纳为张拉破坏—剪切破坏—张拉劈裂破坏的演化过程。冲击荷载作用下,石墨鳞片破坏程度主要受压力大小和作用方向控制,拉伸破坏可减少石墨鳞片内部断裂,低应变率可减少岩粉产生。因此,可通过调整冲击波传播方向、降低峰值应力和增大矿石拉应力破坏区域,以减少爆破冲击对石墨鳞片的破坏作用。
  • 图  1  SHPB实验系统

    Figure  1.  SHPB experimental system

    图  2  不同层理角度的试样照片

    Figure  2.  Photos of samples with different bedding angles

    图  3  三种冲击荷载下试样的动态平衡曲线

    Figure  3.  Dynamic equilibrium curves of samples under three impact loads

    图  4  动态抗压强度与层理角度的关系

    Figure  4.  Relationship between dynamic compressive strength and bedding angle

    图  5  各层理角度下石墨矿石的破坏应变

    Figure  5.  Failure strains of graphite ore at various bedding angles

    图  6  不同应变率下石墨弹性模量随层理角度的变化

    Figure  6.  Elastic modulus of graphite ore varied with bedding angle at different strain rates

    图  7  0.3 MPa冲击气压下能量-时间的变化曲线

    Figure  7.  Energy-time curves under 0.3 MPa impact pressure

    图  8  能量利用率与层理角度的关系

    Figure  8.  Relationship between energy utilization ratio and bedding angle

    图  9  能耗密度与层理角度的关系

    Figure  9.  Relationship between energy dissipation density and bedding angle

    图  10  不同层理角度冲击破碎尺寸统计

    Figure  10.  Statistics of particle size at different bedding angles

    图  11  不同层理角度试样的能耗密度与平均破碎尺寸的关系

    Figure  11.  Relationships between energy dissipation densities and average particle sizes of samples with different bedding angles

    图  12  矿石成分及微观结构特征

    Figure  12.  Ore compositions and microstructure characteristics

    图  13  石墨矿石试样破坏实物照片

    Figure  13.  Failure photos of graphite ore

    图  14  试样断面微观扫描图像

    Figure  14.  Microscopic scanning of specimen cross-section

    图  15  石墨碎块断口扫描照片

    Figure  15.  Scanning photos of graphite fragment fracture surfaces

    图  16  不同层理角度试样的破坏形式

    Figure  16.  Failure forms of specimens at different layer bedding angles

  • [1] 高惠民, 张凌燕, 管俊芳, 等. 石墨、石英、萤石选矿提纯技术进展 [J]. 金属矿山, 2020(10): 58–69. DOI: 10.19614/j.cnki.jsks.202010006.

    GAO H M, ZHANG H Y, GUAN J F, et al. Graphite, quartz and fluorite purification technology trends [J]. Metal Mine, 2020(10): 58–69. DOI: 10.19614/j.cnki.jsks.202010006.
    [2] 张苏江, 王楠, 崔立伟, 等. 国内外石墨资源供需形势分析 [J]. 无机盐工业, 2021, 53(7): 1–11. DOI: 10.19964/j.issn.1006-4990.2021-0086.

    ZHANG S J, WANG N, CUI L W, et al. Analysis of supply and demand situation of graphite resources at home and abroad [J]. Inorganic Chemicals Industry, 2021, 53(7): 1–11. DOI: 10.19964/j.issn.1006-4990.2021-0086.
    [3] 孙华星, 赵恒勤, 刘磊. 晶质石墨碎磨中鳞片保护的研究进展 [J]. 矿产保护与利用, 2021, 41(6): 20–26. DOI: 10.13779/j.cnki.issn1001-0076.2021.06.003.

    SUN X H, ZHAO H Q, LIU L. Advanced in the protection of crystalline graphite flake during grinding [J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 20–26. DOI: 10.13779/j.cnki.issn1001-0076.2021.06.003.
    [4] 温森, 赵现伟, 常玉林, 等. 基于SHPB的复合岩样动态压缩破坏能量耗散分析 [J]. 应用基础与工程科学学报, 2021, 29(2): 483–492. DOI: 10.16058/j.issn.1005-0930.2021.02.020.

    WEN S, ZHAO X W, CHANG Y L, et al. Energy dissipation of dynamic failure of mixed rock specimens subject to SHPB compression [J]. Journal of Basic Science and Engineering, 2021, 29(2): 483–492. DOI: 10.16058/j.issn.1005-0930.2021.02.020.
    [5] 孙清佩, 张志镇, 李培超, 等. 黑色页岩动载破坏的层理效应及损伤本构模型研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.

    SUN Q P, ZHANG Z Z, LI P C, et al. Study on the angle effect and damage constitutive model of black shale under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.
    [6] 李地元, 高飞红, 刘濛, 等. 动静组合加载下含孔洞层状砂岩破坏机制探究 [J]. 岩土力学, 2021, 42(8): 2127–2140. DOI: 10.16285/j.rsm.2021.0051.

    LI D Y, GAO F H, LIU M, et al. Research on failure mechanism of stratified sandstone with pre-cracked hole under combined static-dynamic loads [J]. Rock and Soil Mechanics, 2021, 42(8): 2127–2140. DOI: 10.16285/j.rsm.2021.0051.
    [7] WANG W, ZHAO Y, TENG T, et al. Influence of bedding planes on mode Ⅰ and mixed-mode (Ⅰ-Ⅱ) dynamic fracture toughness of coal: analysis of experiments [J]. Rock Mechanics and Rock Engineering, 2021, 54: 173–189. DOI: 10.1007/s00603-020-02250-9.
    [8] 杨国梁, 毕京九, 郭伟民, 等. 加载角度对层理页岩裂纹扩展影响的实验研究 [J]. 爆炸与冲击, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.

    YANG G L, BI J J, GUO W M, et al. Experimental study on the effect of loading angle on crack propagation in angle shale [J]. Explosion and Shock Waves, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.
    [9] 王雁冰, 付代睿. 层理角度对天然岩石材料动态断裂行为的影响研究 [J]. 岩石力学与工程学报, 2023, 42(4): 849–867. DOI: 10.13722/j.cnki.jrme.2022.0236.

    WANG Y B, FU D R. Effect of angle angle on dynamic fracture behavior of natural rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(4): 849–867. DOI: 10.13722/j.cnki.jrme.2022.0236.
    [10] 叶海旺, 严立德, 雷涛, 等. 冲击荷载下石墨矿石破碎能耗特征 [J]. 爆破, 2023, 40(1): 30–36. DOI: 10.3963/j.issn.1001-487X.2023.01.004.

    YE H W, YAN L D, LEI T, et al. Crushing energy dissipation characteristics of graphite ore rock under impact loads [J]. Blasting, 2023, 40(1): 30–36. DOI: 10.3963/j.issn.1001-487X.2023.01.004.
    [11] 叶海旺, 李兴旺, 雷涛, 等. 石墨矿石品位对其动力学特性的影响研究 [J]. 爆破, 2022, 39(4): 25–31, 52. DOI: 10.3963/j.issn.1001-487X.2022.04.004.

    YE H W, LI X W, LEI T, et al. Study on effect of graphite ore grade on its dynamic mechanical properties [J]. Blasting, 2022, 39(4): 25–31, 52. DOI: 10.3963/j.issn.1001-487X.2022.04.004.
    [12] 叶海旺, 温颖, 雷涛, 等. 不同品位石墨矿岩冲击破坏模式与能耗特性研究 [J]. 金属矿山, 2023(3): 65–72. DOI: 10.19614/j.cnki.jsks.202303008.

    YE H W, WEN Y, LEI T, et al. Impact failure modes and energy dissipation characteristics of graphite rock with different grades [J]. Metal Mine, 2023(3): 65–72. DOI: 10.19614/j.cnki.jsks.202303008.
    [13] 梁中勇, 杨胜波, 崔宇, 等. 层理白云岩力学特性及隧道围岩位移特征研究 [J]. 水利水电技术, 2020, 51(6): 121–127. DOI: 10.13928/j.cnki.wrahe.2020.06.014.

    LIANG Z Y, YANG S, CUI Y, et al. Study on mechanical properties of bedded dolomite and displacement characteristics of tunnel surrounding rock [J]. Water Resources and Hydropower Engineering, 2020, 51(6): 121–127. DOI: 10.13928/j.cnki.wrahe.2020.06.014.
    [14] 刘磊, 李睿, 秦浩, 等. 高温后深部矽卡岩动力学特性及微观破坏机制研究 [J]. 岩土工程学报, 2022, 44(6): 1166–1174. DOI: 10.11779/CJGE202206022.

    LIU L, LI R, QIN H, et al. Dynamic mechanical properties and microscopic damage characteristics of deep skarn after high-temperature treatment [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1166–1174. DOI: 10.11779/CJGE202206022.
    [15] 包含, 陈志洋, 兰恒星, 等. 矿物定向排列致各向异性岩石渐进破坏强度特征——以黑云母石英片岩为例 [J]. 岩土力学, 2022, 43(8): 2060–2070. DOI: 10.16285/j.rsm.2021.1833.

    BAO H, CHEN Z X, LAN H X et al. Progressive failure strength characteristics of anisotropic rocks caused by mineral directional arrangement: a case of biotite quartz schist [J]. Rock and Soil Mechanics, 2022, 43(8): 2060–2070. DOI: 10.16285/j.rsm.2021.1833.
    [16] 包含, 裴润生, 兰恒星, 等. 基于循环加卸载的矿物定向排列致各向异性岩石损伤演化规律——以黑云母石英片岩为例 [J]. 岩石力学与工程学报, 2021, 40(10): 2015–2026. DOI: 10.13722/j.cnki.jrme.2021.0410.

    BAO H, PEI R S, LAN H X et al. Damage evolution of biotite quartz schist caused by mineral directional arrangement under cyclic loading and unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2015–2026. DOI: 10.13722/j.cnki.jrme.2021.0410.
    [17] 武仁杰, 李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究 [J]. 爆炸与冲击, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.

    WU R J, LI H B. Study on multi-scale failure mechanism of stratiform thousand rocks under SHPB impact [J]. Explosion and Shock Waves, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
    [18] 李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014.

    LI X B. Foundation and application of rock dynamics [M]. Beijing: Science Press, 2014.
    [19] FAN X R, LUO N, YUAN Y S, et al. Dynamic mechanical behavior and damage constitutive model of shales with different angle under compressive impact loading [J]. Arabian Journal of Geosciences, 2021, 14(17): 1752. DOI: 10.1007/S12517-021-08089-W.
    [20] 罗宁, 索云琛, 张浩浩, 等. 循环冲击层理煤岩动力学行为及破坏规律研究 [J]. 爆炸与冲击, 2023, 43(4): 043102. DOI: 10.11883/bzycj-2022-0253.

    LUO N, SUO Y C, ZHANG H H, et al. Study on dynamic behavior and failure law of angle coal rock by cyclic impact [J]. Explosion and Shock Waves, 2023, 43(4): 043102. DOI: 10.11883/bzycj-2022-0253.
    [21] WU H, DAI B, CHENG L, et al. Experimental study of dynamic mechanical response and energy dissipation of rock having a circular opening under impact loading [J]. Mining, Metallurgy & Exploration, 2021, 38(2): 1111–1124. DOI: 10.1007/s42461-021-00405-y.
    [22] LU W B, YANG J H, YAN P, et al. Dynamic response of rock mass induced by the transient release of in-situ stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 129–141. DOI: 10.1016/j.ijrmms.2012.05.001.
    [23] 段炳鑫, 陈宏强, 赵华平, 等. 冀西北地区古元古代含石墨变质地层岩石矿物地球化学特征与成矿机制研究 [J]. 岩石矿物学杂志, 2023, 42(2): 191–204. DOI: 10.20086/j/cnki/yskw/2023/0202.

    DUAN B X, CHEN H Q, ZHAO H P, et al. Geochemical characteristics and metallogenic mechanism of the Paleoproterozoic graphite-bearing metamorphic strata in Northwestern Hebei Province [J]. Acta Petrologica et Mineralogica, 2023, 42(2): 191–204. DOI: 10.20086/j/cnki/yskw/2023/0202.
    [24] 赵斌, 王芝银, 伍锦鹏. 矿物成分和细观结构与岩石材料力学性质的关系 [J]. 煤田地质与勘探, 2013, 41(3): 59–63, 67. DOI: 10.3969/j.issn.1001-1986.2013.03.014.

    ZHAO B, WANG Z Y, WU J P. Relation between mineralogical composition and microstructure to the mechanical properties of rock materials [J]. Coal Geology & Exploration, 2013, 41(3): 59–63, 67. DOI: 10.3969/j.issn.1001-1986.2013.03.014.
    [25] 杨立云, 刘振坤, 周莹莹, 等. 爆炸应力波在含层理介质中传播规律的实验研究 [J]. 爆破, 2018, 35(2): 1–5, 11. DOI: 10.3963/j.issn.1001-487X.2018.02.001.

    YANG L Y, LIU Z K, ZHOU Y Y, et al. Study on propagation law of explosive stress wave in layered media [J]. Blasting, 2018, 35(2): 1–5, 11. DOI: 10.3963/j.issn.1001-487X.2018.02.001.
  • 加载中
图(16)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  73
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-08-13
  • 网络出版日期:  2023-09-07
  • 刊出日期:  2023-12-12

目录

    /

    返回文章
    返回