• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理

叶海旺 钱正昆 雷涛 温颖 李睿

闫鹏, 方秦, 张锦华, 张亚栋, 陈力, 范俊余. 不同典型形状落石冲击砂垫层试验与量纲分析[J]. 爆炸与冲击, 2021, 41(7): 073303. doi: 10.11883/bzycj-2020-0219
引用本文: 叶海旺, 钱正昆, 雷涛, 温颖, 李睿. 冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理[J]. 爆炸与冲击, 2023, 43(12): 123102. doi: 10.11883/bzycj-2023-0223
YAN Peng, FANG Qin, ZHANG Jinhua, ZHANG Yadong, CHEN Li, FAN Junyu. Experimental study of different typical shape falling-rocks impacting on the sand cushion and dimensionless analysis[J]. Explosion And Shock Waves, 2021, 41(7): 073303. doi: 10.11883/bzycj-2020-0219
Citation: YE Haiwang, QIAN Zhengkun, LEI Tao, WEN Ying, LI Rui. Bedding effect and macro-micro mechanism of graphite ore dynamic mechanical properties under impact loads[J]. Explosion And Shock Waves, 2023, 43(12): 123102. doi: 10.11883/bzycj-2023-0223

冲击载荷下石墨矿石动力学特性的层理效应及宏微观破坏机理

doi: 10.11883/bzycj-2023-0223
基金项目: 国家重点研发计划( 2020YFC1909602,2021YFC2902901);湖北省重点研发计划(2021BCA152)
详细信息
    作者简介:

    叶海旺(1971- ),男,博士,教授,博士生导师,yehaiwang369@hotmail.com

    通讯作者:

    雷 涛(1983- ),男,博士,讲师,leitao539@163.com

  • 中图分类号: O347.3

Bedding effect and macro-micro mechanism of graphite ore dynamic mechanical properties under impact loads

  • 摘要: 为探究冲击荷载作用下层理对石墨矿石动力学特性的影响规律,采用直径为50 mm 的分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)系统,对0°、45°和90°层理角度的石墨矿石开展了不同冲击荷载(0.3、0.4和0.5 MPa)下的动态压缩实验,并结合高速摄影和电子扫描技术分析了不同层理角度石墨矿石的动态力学特性和冲击破坏模式。研究结果表明:石墨矿石中矿物多呈同形粒状定向排列,接触界限不规则,白云母和石英含量较高,与石墨伴生,沿层理面富集;层理面的存在对石墨矿石的力学性质存在劣化作用,45°层理劣化作用最强;能耗特性随层理角度增大呈U形变化,与强度特征相似;同一应变率下,矿石破碎尺寸与能耗密度具有明显的相关性,0°层理破碎平均尺寸较小,能耗密度较大,45°层理破碎后块度最大,能耗密度最小;受外力作用时,石墨鳞片不仅从内部断裂,也易被伴生矿物撕裂,随层理角度的增大,试样破坏形式可归纳为张拉破坏—剪切破坏—张拉劈裂破坏的演化过程。冲击荷载作用下,石墨鳞片破坏程度主要受压力大小和作用方向控制,拉伸破坏可减少石墨鳞片内部断裂,低应变率可减少岩粉产生。因此,可通过调整冲击波传播方向、降低峰值应力和增大矿石拉应力破坏区域,以减少爆破冲击对石墨鳞片的破坏作用。
  • 水下爆炸主要包括三个阶段:装药的爆轰、冲击波的产生和传播、气泡的形成和脉动,各阶段的荷载效应和宏观行为各有特点又密切联系、相互影响。早期的研究多出于军事应用的目的,着重分析了水下爆炸现象及荷载效应,其中Cole[1]基于对二十世纪中叶前的水下爆炸研究成果的总结分析,对水下爆炸的物理现象、毁伤机理和基本定律进行了研究,形成了比较系统的理论体系。近年来,随着试验和数值模拟技术的发展,研究重心逐渐向复杂边界条件对荷载特性和气泡脉动规律的影响倾斜,对于水深[2]、水面环境[3-4]、水底条件[5-6]、临近结构[3,7]等因素影响下的爆炸荷载效应均有较成熟的研究,这为准确分析水下爆炸的荷载特性和对结构的毁伤机理提供了依据。

    爆炸荷载作用下码头结构毁伤效应及毁伤机理研究是一个涉及爆炸荷载特性、多种材料动态本构模型、多介质瞬态动力耦合相互作用、钢筋混凝土结构动力破坏机理和动态性能等多方面的复杂课题,相关系统研究较少,现有研究多集中于钢筋混凝土构件毁伤机理和抗爆特性[8-11]。近年来,张社荣等[12]、王高辉等[13-14]和Li等[15]对水下爆炸下高混凝土坝的毁伤机理和毁伤特性进行了较为系统的研究。国内外就爆炸对码头的毁伤效应和抢修抢建问题已开展了一些研究,但研究对象多为高桩码头,荷载作用方式多为空爆和内爆,鲜见水下爆炸对沉箱重力式码头的毁伤效应的研究[16-18]

    本文通过开展不同爆距下水下爆炸对沉箱重力式码头模型毁伤效应的试验研究,对水下爆炸下水中荷载和码头毁伤情况进行了采集分析,得到了水下爆炸下沉箱重力式码头的主要毁伤因素和毁伤模式,系统分析了毁伤机理,初步研究了爆距对毁伤效应的影响。为进一步开展理论和数值模拟研究提供了参考和依据。

    以现有突堤式沉箱码头为参考,以真实反映沉箱重力式码头结构特性和材料特性为原则,依据设计规范,兼顾施工可行性和试验条件制作模型。模型长298 cm、宽162 cm、高219 cm。以封仓板为界,码头下部为沉箱结构,高180 cm,由外墙、沉箱底板、封舱板、内隔墙及其所围成的6个长86 cm、宽65 cm仓格和仓格内的饱和砂构成。码头上部结构高39 cm,由面板、外墙、管沟底板、管沟内壁及其所围成的前、后管沟和中间仓格以及仓格内的干砂构成。为便于描述,对码头竖向外墙进行编号,将码头外墙长度方向等分成3份、宽度方向外墙等分成2份,从迎爆面左端起,按逆时针依次编为1#~10#号墙。模型三视图及其剖面图如图1所示,本文图中长度单位均采用厘米(cm),高程单位均采用米(m),后文不再赘述。

    图  1  模型三视图和剖面图
    Figure  1.  Three views and sectional views of wharf model

    混凝土设计强度C30,钢筋采用HPB335型号,填料为普通河砂,主要部位件混凝土厚度及配筋情况如表1所示。共制作3个模型。

    表  1  主要部位混凝土厚度及配筋情况
    Table  1.  Concrete thickness and matching bar condition of main members
    位置 混凝土厚度/cm 配筋情况 保护层厚度/cm
    仓格外墙 12 双层双向配筋,钢筋直径 1.2 cm,间距 18 cm 2
    仓格内隔墙 8 双层双向配筋,钢筋直径 0.8 cm,间距 9 cm 1.5
    沉箱底板 25 双层双向配筋,钢筋直径 2 cm,间距 18 cm 4
    管沟底板 13 双层双向配筋,钢筋直径 0.6 cm,间距 15 cm 2
    管沟外壁 12 双层双向配筋,钢筋直径 0.6 cm,间距 15 cm 1.5
    面板 6 管沟上部面板单层双向配筋,其他部位不配筋 1.5
    封仓板 6 不配筋
    下载: 导出CSV 
    | 显示表格

    试验场地为直径8 m、深8 m的钢筋混凝土空心圆柱爆坑,内衬2 cm厚钢板。试验水深1.8 m,模型四面临水,底部无人为约束。炸药承台与沉箱吊环焊接定位。均采用1 kg TNT当量的圆柱状PENT炸药,药包轴线垂直于迎爆面,正对迎爆面外墙中点。炸药位于水深0.9 m处,工况1、2、3中离迎爆面水平距离分别为接触、0.5 m、1 m。试验方案如表2所示,试验场地及炸药布设方案如图2所示。

    表  2  试验方案
    Table  2.  Experimental schemes
    工况 爆炸类型 模型 药包编号 炸药位置
    1 接触爆炸 UW2 c1 贴于迎爆面中间仓格外墙中点,水深 0.9 m 处
    2 非接触爆炸 UW1 c2 正对中间仓格外墙中点,爆距 0.5 m,水深 0.9 m 处
    3 非接触爆炸 UW3 c3 正对中间仓格外墙中点,爆距 1.0 m,水深 0.9 m 处
    下载: 导出CSV 
    | 显示表格
    图  2  试验场地及炸药布设方案
    Figure  2.  Experimental site and explosive position arrangement

    试验中采用PCB138A10水下激波传感器对水下冲击波荷载进行测量,传感器量程69 MPa,谐振频率≥1 MHz,采集器采集频率为1 MHz。通过钢丝绳和重锤将传感器固定于远离模型侧面与迎爆面平齐处,测点与药包同深。试验前对传感器实际位置进行量测,布设方案和各工况中传感器实际位置如图3所示。此外,以爆坑内壁为基准,试验前后通过人工量距对模型定位,得到码头整体滑移。

    图  3  水下传感器布设方案及实际位置
    Figure  3.  Sensor placement arrangement and actual position

    本试验为有限水域浅水爆炸,现无被广泛认可的冲击波荷载经验计算公式[19],采用基于大量实验得到的无限水域中爆炸的冲击波荷载经验计算公式:

    Pm=52.16(W1/3S)1.13
    (1)
    I=5 760W0.63S0.891
    (2)
    Rmax=3.3(WH+10.33)1/3
    (3)

    式中:W为炸药装量,kg;H为炸药距离水面的深度,m;S为荷载传播距离,m;Pm为冲击波峰值压力,MPa;I为冲击波比冲量,Pa·s;Rmax为气泡膨胀的最大半径,m。表3为水下荷载测量值和理论计算值比较,对比发现峰值压力偏差较小,试验设置准确、有效;但各冲击波相互作用使得荷载的衰减规律发生了较大的变化,故比冲量偏差较大。

    表  3  爆炸冲击波荷载验证
    Table  3.  Verification of explosion shock wave pressure
    工况 冲击波峰值压力/MPa 冲击波比冲量/(kPa·s)
    测量值 计算值 偏差% 测量值 理论计算值 偏差%
    1 13.57 13.08 3.75 1.17 1.94 −39.69
    2 13.58 13.27 2.34 1.00 1.96 −48.98
    3 14.16 13.88 2.02 1.69 2.03 −16.75
    下载: 导出CSV 
    | 显示表格

    根据式(3)可知本文试验中气泡的理论最大半径为1.47 m,而实际爆深为0.9 m。受气泡膨胀的推动,自由面会向上运动形成水冢直至破碎,水质点获得大量动能,出现垂直喷射和径向飞溅[20]。起爆后各工况均观察到十几米高的水柱。此外,因水面被顶开,爆轰产物大量外泄,试验中未形成完整的气泡脉动过程,因此本文工况下水下爆炸荷载作用主要发生于冲击波传播阶段。

    图4为各工况测点压力时程曲线,起算时间为爆炸冲击波到达测点时。不同工况下测点位置荷载变化规律相似,各工况中均出现了3次较为明显的超压作用。爆炸冲击波到达测点时出现第1个峰值压力,亦是最大峰值压力,随后水底反射波到达测点位置,第2个峰值压力出现。最后一个峰值压力是由爆炸冲击波在爆坑侧壁产生的反射波引起的。3次荷载对比如表4所示,爆炸冲击波、水底反射波和侧壁反射波峰值压力、衰减时间和比冲量相近,均会对结构产生较大影响,是本文试验中水下爆炸冲击波传播阶段的主要毁伤因素。

    表  4  冲击波荷载比较
    Table  4.  Compasion of shock wave pressure
    工况 峰值压力/MPa 冲击波比冲量/(kPa·s)
    爆炸冲击波 水底反射波 侧壁反射波 爆炸冲击波 水底反射波 侧壁反射波
    1 13.57 6.05 7.83 1.17 0.16 0.37
    2 13.58 5.73 9.58 1.00 0.15 0.36
    3 14.16 8.68 6.13 1.69 0.26 0.63
    下载: 导出CSV 
    | 显示表格
    图  4  水下测点压力时程曲线
    Figure  4.  Underwater shock wave pressure time-history

    接触爆炸下码头模型毁伤模式如图5所示。爆炸后结构向后整体滑移约35 cm。码头毁伤严重,迎爆面、侧面和顶面均出现较大毁伤。迎爆面外墙被炸穿,填料大量流出。背爆面出现多条较长裂缝,码头上部结构迎爆侧整体前倾,断裂为多块并被部分掀飞,底板无明显破坏现象。此外,在水下爆炸对迎爆面的冲切和通过仓格向上传播的冲击波共同作用下,仓格封仓板与竖向各墙连接处混凝土出现拉剪混合破坏,表现为在沉箱封仓板下缘出现横向通长裂缝,裂缝在迎爆面和侧面较宽,裂纹局部位置在墙的厚度方向贯穿。

    图  5  水下接触爆炸码头模型毁伤模式
    Figure  5.  The damage mode of the wharf under contact explosion in water
    3.1.1   面板

    迎爆面管沟上部面板被掀飞,前后管沟之间面板断裂为多块,后管沟上部面板未出现较为明显的贯通裂缝。这是由于从结构内部传来的冲击波使面板向上弯曲,面板外部受拉严重,混凝土开裂,裂缝在厚度方向迅速发展贯穿,面板断裂为多块并继续向上运动导致的。而从内部传来的冲击波由迎爆侧到背爆侧逐渐衰减,对面板的作用效果逐渐减小,故后管沟上部面板的破坏较轻。此外,面板下侧与管沟侧壁连接位置的混凝土受拉断裂,面板下缘出现横向通长裂缝。

    3.1.2   迎爆面

    迎爆面外墙严重内凹,在沉箱底板上沿和封仓板下沿对应位置各有一条较深的横向贯通裂缝,裂缝由迎爆面延伸至背爆面。2#墙毁伤最严重,大部分混凝土破碎或剥落,外墙被炸穿,形成椭圆形爆坑,爆坑内窄外宽。爆坑边缘混凝土疏松。钢筋网架与爆坑周边混凝土向内弯曲,节点最大挠度为13 cm。爆坑边缘和内部残留的混凝土被大量径向、切向和环向裂缝分割成大小不等的碎块。

    炸药爆炸后,高温高压的爆轰产物急剧膨胀,爆炸冲击波压力超过混凝土的动态抗压强度,2#墙大部分的外保护层混凝土被压碎,形成椭圆形粉碎区,粉碎区深度由起爆位置向四周逐渐变浅。钢筋网架受冲击波的应力作用突变,向内弯曲,在粉碎区外与存留的混凝土之间发生黏结破坏。粉碎区消耗了大部分的爆炸能量,冲击波迅速衰减为压缩应力波向结构内继续传播,此时混凝土虽不会直接被压碎,但引起的径向变形带来的切向拉伸将产生径向微裂纹,并在尖劈作用下向墙内发展形成较宽的径向裂缝。爆坑周边较为明显的环向通长裂缝是面板向内弯曲变形导致成的,环向裂缝在爆坑周边和墙体四周较密。直接作用于两侧墙体的爆炸冲击波荷载较小,毁伤模式以裂缝开展为主。1#和3#墙的毁伤模式相近,在靠近侧面位置,墙外表面存在大量的竖向通长裂缝;在靠近仓格底面和顶面位置存在大量横向通长裂缝。作用于迎爆面的荷载较大,内部纵向隔墙作用有限,迎爆面整体受弯内凹,在迎爆面边缘产生大量的环向裂缝。墙面其余位置未出现明显的通长裂缝。受外墙与填料接触面反射产生的拉伸波的作用,混凝土出现微裂缝,靠近墙体外表面混凝土骨料被拔出,迎爆面出现大量小坑洞。

    此外,爆炸冲击波在水面反射产生的稀疏波与入射冲击波在近自由面区域叠加,产生气穴效应,使得结构出现气穴冲切损伤[14]。仓格封仓板与仓格墙体连接处即处于气穴作用区域,且该处混凝土抗拉和抗剪能力较弱,在气穴冲切的作用下易出现拉伸损伤甚至开裂。损伤沿封仓板下缘,从其迎爆面外墙交界处向结构内发展,形成薄弱面,随后在爆炸对迎爆面冲切作用下进一步发展,最终形成由迎爆面中间发展至背爆面的通长横向裂缝。

    3.1.3   侧面及背爆面

    侧面毁伤情况较迎爆面轻,毁伤主要出现在仓格封仓板以上部分,以4#和5#墙破坏为例说明。外墙下部毁伤以竖向通长裂纹为主。前管沟整体前倾,下部边缘混凝土被压碎。一条较宽的斜裂缝从面板下缘贯通至压碎区,在墙厚度方向裂缝上深下浅,局部贯穿。此外,斜裂缝在封仓板处发展出两条横向裂纹,局部混凝土破裂,钢筋露出。背爆面在侧面外墙和内隔墙对应位置有少量的竖向裂纹,这是由于纵向墙体受爆炸冲切作用向背爆面运动造成的。

    3.1.4   内隔墙及封仓板

    结构内部的毁伤主要分布于迎爆面中间仓格的隔墙和封仓板。封仓板破坏严重,多条横纵裂缝相互贯通,并在厚度方向贯穿。板与内隔墙的交界处混凝土断裂,钢筋拔出,板整体向上隆起。纵隔墙受压变形较大,与外墙接触位置混凝土被压碎。纵隔墙前部钢筋向外鼓曲,混凝土保护层碎裂,部分钢筋露出。隔墙向后弯曲变形,在迎爆面和背面均出现大量半环状裂缝,裂缝由下至上发展,背爆面出现竖向通长裂缝。背爆面裂缝开展较迎爆面严重。

    爆距0.5 m,水下非接触爆炸下码头模型毁伤模式如图6所示。爆炸后结构向后整体滑移约35 cm。码头迎爆面、侧面和顶面均有较大的毁伤,背爆面和底板无明显毁伤。迎爆面外墙被炸穿,中间仓格填料少量流出。

    图  6  爆距0.5 m码头模型毁伤模式
    Figure  6.  The damage mode of the wharf at the explosion distance of 0.5 m

    迎爆面沉箱底板上沿和封仓板对应位置下沿各有一条较深的横向贯通裂缝,裂缝由迎爆面延伸至背爆面。仓格封仓板与仓格墙体连接处出现横向通长裂缝,裂缝由迎爆面中间向背爆面发展,开裂程度逐渐变小。爆炸荷载以水下冲击波的形式作用于迎爆面,迎爆面整体内凹,2#墙凹陷程度最重,1#墙最轻,墙体边缘出现环状裂缝。2#墙体形成边长约20 cm的方形爆坑,爆坑中间墙体被炸穿。爆坑外围混凝土出现大范围冲切破裂,深度较浅,主要出现在外侧钢筋保护层,部分位置钢筋外露。2#墙内凹明显,钢筋网架亦明显弯曲,从爆坑到墙体边缘混凝土分布大量环状裂缝。环状裂缝与径向冲切作用和混凝土部分回弹引起的切向裂缝相互贯通,墙体外表面混凝土大范围龟裂。此外,由于冲击波在墙体与仓格填料交界面反射产生的强拉伸波传播至外表面时,部分靠外的混凝土骨料被附着动能拔出,使得整个迎爆面出现大量小坑洞。

    模型其他部位毁伤模式和诱因与工况1基本相同,纵隔墙无明显毁伤。值得注意的是,工况2除迎爆面外,各部位毁伤程度较工况1基本一致。

    爆距1 m,水下非接触爆炸下码头模型毁伤模式如图7所示。爆炸后结构向后整体滑移约30 cm。码头迎爆面、侧面和顶面出现明显毁伤,背爆面和底板无明显毁伤。

    图  7  爆距1 m码头模型毁伤模式
    Figure  7.  The damage mode of the wharf at the explosion distance of 1 m

    面板顶部出现两条明显的横向通长裂缝,其中远离迎爆面的一条在码头两侧与两侧墙面的斜裂缝相连贯通。面板与管沟侧壁连接位置出现横向通长裂缝,裂缝存在于迎爆面和侧面对应位置,未发展至背爆面,开裂程度从迎爆面到侧面逐渐减小。迎爆面毁伤以裂缝开展为主,未出现明显的混凝土破碎,在沉箱底板上沿和封仓板对应位置下沿各出现一条横向贯通裂缝,裂缝由迎爆面延伸至背爆面。迎爆面墙体内凹,2#墙凹陷程度最重,1#墙最轻,墙体边缘出现环状裂缝。爆炸冲击波到达结构前以球面波形式传播,2#墙体中部所受荷载较大,2#墙中间偏下一小块区域内凹明显,并出现较宽的局部环状裂缝。迎爆面出现大量混凝土粗骨料尺寸小坑洞。侧面毁伤主要出现在上部结构。前管沟整体前倾,管沟下侧出现一条斜裂缝,由面板下缘贯通至封仓板下沿,裂缝上深、宽,下浅、窄。侧面封仓板下部及背爆面除少量混凝土粗骨料抛出造成的小坑洞外无明显毁伤。剖开结构后发现,封仓板下表面有多条较浅的横纵裂缝出现,板与内隔墙的交界处出现较深裂缝,裂缝未贯穿板的厚度方向。横隔墙边缘有少量环状裂缝。纵隔墙无明显毁伤。

    沉箱码头内部结构复杂,介质种类较多,爆炸能量在结构内部传播情况复杂。在受到复杂荷载作用时,结构内部各构件之间相互影响,毁伤模式较为复杂。将可能出现的主要毁伤模式汇总于表5

    表  5  沉箱码头模型主要毁伤模式
    Table  5.  Damage modes of caisson gravity wharf.
    毁伤部位 毁伤模式
    整体 1.整体滑移;2.变形;3.混凝土外表面粗骨料拔出
    面板 1.弯曲变形;2.裂缝开展;3.断裂抛出;4.与其他构件交界处拉剪断裂;5.钢筋混凝土粘结破坏
    迎爆面外墙 1.爆炸成坑;2.混凝土冲切破裂;3混凝土破碎失效;4.弯曲破坏;5.钢筋网架挠曲;6.裂缝开展;7.钢筋混凝土粘结破坏
    侧面外墙 1.混凝土局部破碎;2.裂缝开展
    管沟 1.整体倾斜;2.上面板掀飞;3.裂缝开展
    封仓板 1.整体和局部弯曲;2.裂缝开展;3.断裂;4.与其他构件交界处拉剪断裂;5.钢筋混凝土粘结破坏
    仓格横隔墙 1.裂缝开展;2.受弯变形;3.整体位移
    仓格纵隔墙 1.裂缝开展;2.混凝土破碎、剥落;3.钢筋网架鼓曲;4.整体位移
    沉箱底板 无明显毁伤出现
    下载: 导出CSV 
    | 显示表格

    爆距对整体滑移影响较小,对毁伤模式和毁伤程度影响较大。爆距较远时,毁伤以裂缝扩展为主,较少裂缝互相贯通,局部变形较小,结构完整性和承载能力受影响较小;爆距较近时,迎爆面、侧面和上部结构出现大面积变形、材料破坏失效,裂缝大量贯通、贯穿,结构完整性和承载能力严重下降。但当爆距过近时,爆炸能量被迎爆面结构变形大量吸收,迎爆面毁伤程度大幅增大,码头其他部位毁伤程度增幅放缓。

    本文通过开展水下爆炸对沉箱重力式码头毁伤效应的试验研究,得到如下结论:

    (1)试验中未形成完整的气泡脉动过程,荷载超压主要出现在冲击波传播初始阶段,爆炸冲击波、水底反射波和侧壁反射波是主要的毁伤因素。

    (2)水下爆炸对沉箱重力式码头造成的毁伤程度大、模式多、机理复杂。从整体来看,主要毁伤模式为结构整体滑移和变形。从局部来看,除底板外其余部位均有较大毁伤,迎爆面出现局部的爆炸成坑和混凝土破碎失效,墙体内凹明显,裂缝大量扩展,爆距较近时,外墙被炸穿,仓格内填料流出。前管沟整体前倾,造成通长斜裂缝开展和局部混凝土破碎。面板和封仓板裂缝的开展和贯通较严重,爆距较近时,大量裂缝贯穿,板断裂为多块,出现整体和局部的明显隆起,面板甚至会被大面积掀飞。面板、封仓板与其他构件的连接处较为薄弱,易出现拉、剪或拉剪混合破坏。仓格隔墙变形和裂缝开展较轻,当爆距较近时,纵向内隔墙出现较为明显的偏压破坏。

    (3)同等条件下,爆距越近码头毁伤越严重,但当爆距过近时,爆炸能量被迎爆面结构变形大量吸收,迎爆面毁伤程度大幅增大,码头其他部位毁伤程度增幅放缓。

    (4)码头主要毁伤部位为迎爆面外墙、迎爆侧管沟、封仓板和面板。主要毁伤部位多为码头的主要船岸界面和工作平台,沉箱整体滑移和仓格填料外漏亦会直接影响船舶靠泊环境。水下爆炸对沉箱重力式码头造成的毁伤会直接影响码头的正常运转。

  • 图  1  SHPB实验系统

    Figure  1.  SHPB experimental system

    图  2  不同层理角度的试样照片

    Figure  2.  Photos of samples with different bedding angles

    图  3  三种冲击荷载下试样的动态平衡曲线

    Figure  3.  Dynamic equilibrium curves of samples under three impact loads

    图  4  动态抗压强度与层理角度的关系

    Figure  4.  Relationship between dynamic compressive strength and bedding angle

    图  5  各层理角度下石墨矿石的破坏应变

    Figure  5.  Failure strains of graphite ore at various bedding angles

    图  6  不同应变率下石墨弹性模量随层理角度的变化

    Figure  6.  Elastic modulus of graphite ore varied with bedding angle at different strain rates

    图  7  0.3 MPa冲击气压下能量-时间的变化曲线

    Figure  7.  Energy-time curves under 0.3 MPa impact pressure

    图  8  能量利用率与层理角度的关系

    Figure  8.  Relationship between energy utilization ratio and bedding angle

    图  9  能耗密度与层理角度的关系

    Figure  9.  Relationship between energy dissipation density and bedding angle

    图  10  不同层理角度冲击破碎尺寸统计

    Figure  10.  Statistics of particle size at different bedding angles

    图  11  不同层理角度试样的能耗密度与平均破碎尺寸的关系

    Figure  11.  Relationships between energy dissipation densities and average particle sizes of samples with different bedding angles

    图  12  矿石成分及微观结构特征

    Figure  12.  Ore compositions and microstructure characteristics

    图  13  石墨矿石试样破坏实物照片

    Figure  13.  Failure photos of graphite ore

    图  14  试样断面微观扫描图像

    Figure  14.  Microscopic scanning of specimen cross-section

    图  15  石墨碎块断口扫描照片

    Figure  15.  Scanning photos of graphite fragment fracture surfaces

    图  16  不同层理角度试样的破坏形式

    Figure  16.  Failure forms of specimens at different layer bedding angles

  • [1] 高惠民, 张凌燕, 管俊芳, 等. 石墨、石英、萤石选矿提纯技术进展 [J]. 金属矿山, 2020(10): 58–69. DOI: 10.19614/j.cnki.jsks.202010006.

    GAO H M, ZHANG H Y, GUAN J F, et al. Graphite, quartz and fluorite purification technology trends [J]. Metal Mine, 2020(10): 58–69. DOI: 10.19614/j.cnki.jsks.202010006.
    [2] 张苏江, 王楠, 崔立伟, 等. 国内外石墨资源供需形势分析 [J]. 无机盐工业, 2021, 53(7): 1–11. DOI: 10.19964/j.issn.1006-4990.2021-0086.

    ZHANG S J, WANG N, CUI L W, et al. Analysis of supply and demand situation of graphite resources at home and abroad [J]. Inorganic Chemicals Industry, 2021, 53(7): 1–11. DOI: 10.19964/j.issn.1006-4990.2021-0086.
    [3] 孙华星, 赵恒勤, 刘磊. 晶质石墨碎磨中鳞片保护的研究进展 [J]. 矿产保护与利用, 2021, 41(6): 20–26. DOI: 10.13779/j.cnki.issn1001-0076.2021.06.003.

    SUN X H, ZHAO H Q, LIU L. Advanced in the protection of crystalline graphite flake during grinding [J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 20–26. DOI: 10.13779/j.cnki.issn1001-0076.2021.06.003.
    [4] 温森, 赵现伟, 常玉林, 等. 基于SHPB的复合岩样动态压缩破坏能量耗散分析 [J]. 应用基础与工程科学学报, 2021, 29(2): 483–492. DOI: 10.16058/j.issn.1005-0930.2021.02.020.

    WEN S, ZHAO X W, CHANG Y L, et al. Energy dissipation of dynamic failure of mixed rock specimens subject to SHPB compression [J]. Journal of Basic Science and Engineering, 2021, 29(2): 483–492. DOI: 10.16058/j.issn.1005-0930.2021.02.020.
    [5] 孙清佩, 张志镇, 李培超, 等. 黑色页岩动载破坏的层理效应及损伤本构模型研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.

    SUN Q P, ZHANG Z Z, LI P C, et al. Study on the angle effect and damage constitutive model of black shale under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.
    [6] 李地元, 高飞红, 刘濛, 等. 动静组合加载下含孔洞层状砂岩破坏机制探究 [J]. 岩土力学, 2021, 42(8): 2127–2140. DOI: 10.16285/j.rsm.2021.0051.

    LI D Y, GAO F H, LIU M, et al. Research on failure mechanism of stratified sandstone with pre-cracked hole under combined static-dynamic loads [J]. Rock and Soil Mechanics, 2021, 42(8): 2127–2140. DOI: 10.16285/j.rsm.2021.0051.
    [7] WANG W, ZHAO Y, TENG T, et al. Influence of bedding planes on mode Ⅰ and mixed-mode (Ⅰ-Ⅱ) dynamic fracture toughness of coal: analysis of experiments [J]. Rock Mechanics and Rock Engineering, 2021, 54: 173–189. DOI: 10.1007/s00603-020-02250-9.
    [8] 杨国梁, 毕京九, 郭伟民, 等. 加载角度对层理页岩裂纹扩展影响的实验研究 [J]. 爆炸与冲击, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.

    YANG G L, BI J J, GUO W M, et al. Experimental study on the effect of loading angle on crack propagation in angle shale [J]. Explosion and Shock Waves, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.
    [9] 王雁冰, 付代睿. 层理角度对天然岩石材料动态断裂行为的影响研究 [J]. 岩石力学与工程学报, 2023, 42(4): 849–867. DOI: 10.13722/j.cnki.jrme.2022.0236.

    WANG Y B, FU D R. Effect of angle angle on dynamic fracture behavior of natural rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(4): 849–867. DOI: 10.13722/j.cnki.jrme.2022.0236.
    [10] 叶海旺, 严立德, 雷涛, 等. 冲击荷载下石墨矿石破碎能耗特征 [J]. 爆破, 2023, 40(1): 30–36. DOI: 10.3963/j.issn.1001-487X.2023.01.004.

    YE H W, YAN L D, LEI T, et al. Crushing energy dissipation characteristics of graphite ore rock under impact loads [J]. Blasting, 2023, 40(1): 30–36. DOI: 10.3963/j.issn.1001-487X.2023.01.004.
    [11] 叶海旺, 李兴旺, 雷涛, 等. 石墨矿石品位对其动力学特性的影响研究 [J]. 爆破, 2022, 39(4): 25–31, 52. DOI: 10.3963/j.issn.1001-487X.2022.04.004.

    YE H W, LI X W, LEI T, et al. Study on effect of graphite ore grade on its dynamic mechanical properties [J]. Blasting, 2022, 39(4): 25–31, 52. DOI: 10.3963/j.issn.1001-487X.2022.04.004.
    [12] 叶海旺, 温颖, 雷涛, 等. 不同品位石墨矿岩冲击破坏模式与能耗特性研究 [J]. 金属矿山, 2023(3): 65–72. DOI: 10.19614/j.cnki.jsks.202303008.

    YE H W, WEN Y, LEI T, et al. Impact failure modes and energy dissipation characteristics of graphite rock with different grades [J]. Metal Mine, 2023(3): 65–72. DOI: 10.19614/j.cnki.jsks.202303008.
    [13] 梁中勇, 杨胜波, 崔宇, 等. 层理白云岩力学特性及隧道围岩位移特征研究 [J]. 水利水电技术, 2020, 51(6): 121–127. DOI: 10.13928/j.cnki.wrahe.2020.06.014.

    LIANG Z Y, YANG S, CUI Y, et al. Study on mechanical properties of bedded dolomite and displacement characteristics of tunnel surrounding rock [J]. Water Resources and Hydropower Engineering, 2020, 51(6): 121–127. DOI: 10.13928/j.cnki.wrahe.2020.06.014.
    [14] 刘磊, 李睿, 秦浩, 等. 高温后深部矽卡岩动力学特性及微观破坏机制研究 [J]. 岩土工程学报, 2022, 44(6): 1166–1174. DOI: 10.11779/CJGE202206022.

    LIU L, LI R, QIN H, et al. Dynamic mechanical properties and microscopic damage characteristics of deep skarn after high-temperature treatment [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1166–1174. DOI: 10.11779/CJGE202206022.
    [15] 包含, 陈志洋, 兰恒星, 等. 矿物定向排列致各向异性岩石渐进破坏强度特征——以黑云母石英片岩为例 [J]. 岩土力学, 2022, 43(8): 2060–2070. DOI: 10.16285/j.rsm.2021.1833.

    BAO H, CHEN Z X, LAN H X et al. Progressive failure strength characteristics of anisotropic rocks caused by mineral directional arrangement: a case of biotite quartz schist [J]. Rock and Soil Mechanics, 2022, 43(8): 2060–2070. DOI: 10.16285/j.rsm.2021.1833.
    [16] 包含, 裴润生, 兰恒星, 等. 基于循环加卸载的矿物定向排列致各向异性岩石损伤演化规律——以黑云母石英片岩为例 [J]. 岩石力学与工程学报, 2021, 40(10): 2015–2026. DOI: 10.13722/j.cnki.jrme.2021.0410.

    BAO H, PEI R S, LAN H X et al. Damage evolution of biotite quartz schist caused by mineral directional arrangement under cyclic loading and unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2015–2026. DOI: 10.13722/j.cnki.jrme.2021.0410.
    [17] 武仁杰, 李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究 [J]. 爆炸与冲击, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.

    WU R J, LI H B. Study on multi-scale failure mechanism of stratiform thousand rocks under SHPB impact [J]. Explosion and Shock Waves, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
    [18] 李夕兵. 岩石动力学基础与应用 [M]. 北京: 科学出版社, 2014.

    LI X B. Foundation and application of rock dynamics [M]. Beijing: Science Press, 2014.
    [19] FAN X R, LUO N, YUAN Y S, et al. Dynamic mechanical behavior and damage constitutive model of shales with different angle under compressive impact loading [J]. Arabian Journal of Geosciences, 2021, 14(17): 1752. DOI: 10.1007/S12517-021-08089-W.
    [20] 罗宁, 索云琛, 张浩浩, 等. 循环冲击层理煤岩动力学行为及破坏规律研究 [J]. 爆炸与冲击, 2023, 43(4): 043102. DOI: 10.11883/bzycj-2022-0253.

    LUO N, SUO Y C, ZHANG H H, et al. Study on dynamic behavior and failure law of angle coal rock by cyclic impact [J]. Explosion and Shock Waves, 2023, 43(4): 043102. DOI: 10.11883/bzycj-2022-0253.
    [21] WU H, DAI B, CHENG L, et al. Experimental study of dynamic mechanical response and energy dissipation of rock having a circular opening under impact loading [J]. Mining, Metallurgy & Exploration, 2021, 38(2): 1111–1124. DOI: 10.1007/s42461-021-00405-y.
    [22] LU W B, YANG J H, YAN P, et al. Dynamic response of rock mass induced by the transient release of in-situ stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 129–141. DOI: 10.1016/j.ijrmms.2012.05.001.
    [23] 段炳鑫, 陈宏强, 赵华平, 等. 冀西北地区古元古代含石墨变质地层岩石矿物地球化学特征与成矿机制研究 [J]. 岩石矿物学杂志, 2023, 42(2): 191–204. DOI: 10.20086/j/cnki/yskw/2023/0202.

    DUAN B X, CHEN H Q, ZHAO H P, et al. Geochemical characteristics and metallogenic mechanism of the Paleoproterozoic graphite-bearing metamorphic strata in Northwestern Hebei Province [J]. Acta Petrologica et Mineralogica, 2023, 42(2): 191–204. DOI: 10.20086/j/cnki/yskw/2023/0202.
    [24] 赵斌, 王芝银, 伍锦鹏. 矿物成分和细观结构与岩石材料力学性质的关系 [J]. 煤田地质与勘探, 2013, 41(3): 59–63, 67. DOI: 10.3969/j.issn.1001-1986.2013.03.014.

    ZHAO B, WANG Z Y, WU J P. Relation between mineralogical composition and microstructure to the mechanical properties of rock materials [J]. Coal Geology & Exploration, 2013, 41(3): 59–63, 67. DOI: 10.3969/j.issn.1001-1986.2013.03.014.
    [25] 杨立云, 刘振坤, 周莹莹, 等. 爆炸应力波在含层理介质中传播规律的实验研究 [J]. 爆破, 2018, 35(2): 1–5, 11. DOI: 10.3963/j.issn.1001-487X.2018.02.001.

    YANG L Y, LIU Z K, ZHOU Y Y, et al. Study on propagation law of explosive stress wave in layered media [J]. Blasting, 2018, 35(2): 1–5, 11. DOI: 10.3963/j.issn.1001-487X.2018.02.001.
  • 期刊类型引用(1)

    1. 韩明海,刘闯,李鹏程,刘子涵,张先锋. 弹体高速侵彻花岗岩靶体的结构响应特性. 爆炸与冲击. 2025(01): 104-124 . 本站查看

    其他类型引用(1)

  • 加载中
图(16)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  94
  • PDF下载量:  128
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-06-28
  • 修回日期:  2023-08-13
  • 网络出版日期:  2023-09-07
  • 刊出日期:  2023-12-12

目录

/

返回文章
返回