TC11钛合金动态热塑互动行为研究

陈军红 尹标 徐伟芳 张方举 谢若泽

陈军红, 尹标, 徐伟芳, 张方举, 谢若泽. TC11钛合金动态热塑互动行为研究[J]. 爆炸与冲击, 2024, 44(5): 053101. doi: 10.11883/bzycj-2023-0228
引用本文: 陈军红, 尹标, 徐伟芳, 张方举, 谢若泽. TC11钛合金动态热塑互动行为研究[J]. 爆炸与冲击, 2024, 44(5): 053101. doi: 10.11883/bzycj-2023-0228
CHEN Junhong, YIN Biao, XU Weifang, ZHANG Fangju, XIE Ruoze. The coupled thermal-plastic behavior of TC11 titanium alloy[J]. Explosion And Shock Waves, 2024, 44(5): 053101. doi: 10.11883/bzycj-2023-0228
Citation: CHEN Junhong, YIN Biao, XU Weifang, ZHANG Fangju, XIE Ruoze. The coupled thermal-plastic behavior of TC11 titanium alloy[J]. Explosion And Shock Waves, 2024, 44(5): 053101. doi: 10.11883/bzycj-2023-0228

TC11钛合金动态热塑互动行为研究

doi: 10.11883/bzycj-2023-0228
基金项目: 国家自然科学基金(12172344)
详细信息
    作者简介:

    陈军红(1987- ),男,博士,副研究员,chenjh@lnm.imech.ac.cn

  • 中图分类号: O346

The coupled thermal-plastic behavior of TC11 titanium alloy

  • 摘要: 利用分离式霍普金森压杆对TC11钛合金平板帽形试样进行动态加载,基于高频红外点阵测温技术捕捉了剪切区温升随加载时间变化的历程,结合热传导理论分析和动态剪切数值模拟,分析了动态剪切过程中剪切区温升随时间和空间的分布规律。研究结果表明,在动态剪切加载下,TC11钛合金表现出脆性的变形行为,剪切区最高温升为430 ℃,且在实验所覆盖的加载速率范围内,加载速率对动态剪切温升影响不明显;显著的温升主要集中在剪切区中心附近100 μm量级区域内,温升区具有高度局部化的特征,且剪切区维持较高温度所持续的时间在10 μs量级。理论研究和数值模拟发现,动态加载下剪切区内最高温度可达751 ℃,剪切区温度时空分布规律与实验结果保持一致。实验和数值模拟结果均显示,剪切区最高温升发生在材料断裂时刻,表明剪切区显著温升应来源于剪切变形造成的应变高度集中发展。
  • 图  1  平板剪切试样和夹持装置

    Figure  1.  The plane shear specimen and the support device

    图  2  动态剪切温升实验加载和测试装置示意图

    Figure  2.  The schematic graph of the loading and testing devices

    图  3  温度与电压之间关系的标定结果

    Figure  3.  Calibration results of the relationship between temperature and voltage

    图  4  17 m/s撞击速度下试样两端的力平衡分析

    Figure  4.  Force equilibrium analysis of the sample under the impact velocity of 17 m/s

    图  5  17 m/s撞击速度下TC11钛合金载荷-位移曲线

    Figure  5.  The force-displacement curves of TC11 titanium under the impact velocity of 17 m/s

    图  6  14 m/s撞击速度下TC11钛合金的载荷-位移曲线

    Figure  6.  The force-displacement curves of TC11 titanium under the impact velocity of 14 m/s

    图  7  5.6 m/s撞击速度下TC11钛合金的载荷-位移曲线

    Figure  7.  The force-displacement curves of TC11 titanium under the impact velocity of 5.6 m/s

    图  8  TC11钛合金的剪切应力-应变曲线

    Figure  8.  The shear stress-strain curves of TC11 titanium

    图  9  TC11钛合金宏观断裂形貌

    Figure  9.  The macroscopic fracture of TC11 titanium alloy

    图  10  TC11钛合金微观断裂形貌

    Figure  10.  The microscopic fracture surface of TC11 titanium alloy

    图  11  剪切带测量温度随时间的变化

    Figure  11.  The variation of tested temperature rise with time

    图  12  不同时间尺度下剪切带温升随距离的变化规律

    Figure  12.  Temperature rise vs. distance at different time scales

    图  13  剪切带最高温度随时间的变化规律

    Figure  13.  The variation of maximum temperature with time

    图  14  有限元分析模型及特征分析单元

    Figure  14.  FEM model and the specific analytical elements

    图  15  等效塑性应变随时间的变化曲线

    Figure  15.  The variation of effective strain with time

    图  16  剪切区温升随时间的变化曲线

    Figure  16.  The variation of temperature rise in the shear zone with time

    图  17  实验测温结果与数值模拟结果的对比

    Figure  17.  The comparison of temperature rise between experiment and simulation results

    图  18  剪切区温升的发展历程

    Figure  18.  Evolution of temperature rise in the shear zone

    表  1  $B_1 $$B_5 $标定值

    Table  1.   The calibration values of $B_1 $$B_5 $

    通道 B1 B2 B3 B4 B5
    ch1 64162 −5.21×106 2.13×108 −3.96×109 2.72×1010
    ch2 167086 −3.26×107 3.14×109 −1.36×1011 2.16×1012
    ch3 199221 −4.59×107 5.22×109 −2.67×1011 5.03×1012
    ch4 42706 −4.52×106 2.89×108 −8.33×109 9.16×1010
    ch5 42263 −4.45×106 2.91×108 −8.65×109 9.81×1010
    ch6 32925 −2.32×106 9.39×107 −1.73×109 1.20×1010
    ch7 37901 −2.19×106 6.70×107 −9.42×108 4.98×109
    ch8 46777 −5.31×106 3.62×108 −1.12×1010 1.31×1011
    下载: 导出CSV

    表  2  剪切带温度测量结果

    Table  2.   Test results of temperature rise at shear bands

    试样编号子弹撞击速度/(m∙s−1测量的最高温度/℃
    1-117180
    1-2250
    1-3340
    1-4343
    2-15.6200
    2-2425
    2-3430
    2-4180
    2-5330
    下载: 导出CSV
  • [1] GORYNIN I V. Titanium alloys for marine application [J]. Materials Science and Engineering: A, 1999, 263(2): 112–116. DOI: 10.1016/S0921-5093(98)01180-0.
    [2] PETERS M, KUMPFERT J, WARD C H, et al. Titanium alloys for aerospace applications [J]. Advanced Engineering Materials, 2003, 5(6): 419–427. DOI: 10.1002/adem.200310095.
    [3] GURRAPPA I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications [J]. Materials Characterization, 2003, 51(2/3): 131–139. DOI: 10.1016/j.matchar.2003.10.006.
    [4] LEYENS C, PETERS M. Titanium and titanium alloys [M]. Weinheim: Wiley-VCH, 2003.
    [5] RACK H J, QAZI J I. Titanium alloys for biomedical applications [J]. Materials Science and Engineering: C, 2006, 26(8): 1269–1277. DOI: 10.1016/j.msec.2005.08.032.
    [6] RITTEL D, OSOVSKI S. Dynamic failure by adiabatic shear banding [J]. International Journal of Fracture, 2010, 162(1): 177–185. DOI: 10.1007/s10704-010-9475-8.
    [7] BAI Y L. Thermo-plastic instability in simple shear [J]. Journal of the Mechanics and Physics of Solids, 1982, 30(4): 195–207. DOI: 10.1016/0022-5096(82)90029-1.
    [8] GRADY D E, KIPP M E. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids [J]. Journal of the Mechanics and Physics of Solids, 1987, 35(1): 95–119. DOI: 10.1016/0022-5096(87)90030-5.
    [9] GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. DOI: 10.1103/PhysRevLett.122.015503.
    [10] GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. DOI: 10.1016/j.jmps.2019.103811.
    [11] ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates—Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. DOI: 10.1016/0022-5096(96)00003-8.
    [12] LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201–2231. DOI: 10.1016/S0022-5096(98)00044-1.
    [13] RANC N, TARAVELLA L, PINA V, et al. Temperature field measurement in titanium alloy during high strain rate loading—adiabatic shear bands phenomenon [J]. Mechanics of Materials, 2008, 40(4/5): 255–270. DOI: 10.1016/j.mechmat.2007.08.002.
    [14] 苏冠龙, 龚煦, 李玉龙, 等. TC4在动态载荷下的剪切行为研究 [J]. 爆炸与冲击, 2015, 35(4): 527–535. DOI: 10.11883/1001-1455(2015)04-0527-09.

    SU G L, GONG X, LI Y L, et al. Shear behavior of TC4 alloy under dynamic loading [J]. Explosion and Shock Waves, 2015, 35(4): 527–535. DOI: 10.11883/1001-1455(2015)04-0527-09.
    [15] CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in α-titanium: experiments, modeling and microstructural evolution [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8): 1889–1909. DOI: 10.1016/j.jmps.2004.02.013.
    [16] 李继承, 陈小伟, 陈刚. 921A钢纯剪切帽状试件绝热剪切变形的数值模拟 [J]. 爆炸与冲击, 2010, 30(4): 361–369. DOI: 10.11883/1001-1455(2010)04-0361-09.

    LI J C, CHEN X W, CHEN G. Numerical simulations on adiabatic shear deformations of 921A steel pure shear hat-shaped specimens [J]. Explosion and Shock Waves, 2010, 30(4): 361–369. DOI: 10.11883/1001-1455(2010)04-0361-09.
    [17] ZHANG J, TAN C W, REN Y, et al. Adiabatic shear fracture in Ti-6Al-4V alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2396–2401. DOI: 10.1016/S1003-6326(11)61026-1.
    [18] GIOVANOLA J H. Adiabatic shear banding under pure shear loading. part Ⅱ: fractographic and metallographic observations [J]. Mechanics of Materials, 1988, 7(1): 73–87. DOI: 10.1016/0167-6636(88)90007-5.
    [19] LEWANDOWSKI J J, GREER A L. Temperature rise at shear bands in metallic glasses [J]. Nature Materials, 2006, 5(1): 15–18. DOI: 10.1038/nmat1536.
    [20] CHEN J H, XU W F, ZHANG F J, et al. Strain rate dependent tension behavior of TC11 titanium alloys [J]. Rare Metal Materials and Engineering, 2021, 50(6): 1883–1889. DOI: 10.12442/j.issn.1002-185X.E20200020.
    [21] 陈军红, 徐伟芳, 张方举, 等. 冲击载荷作用下TC11钛合金失效模型中关键参数测试方法研究 [J]. 中国测试, 2018, 44(10): 164–168. DOI: 10.11857/j.issn.1674-5124.2018.10.028.

    CHEN J H, XU W F, ZHANG F J, et al. The measurement of the key parameters in the dynamic failure mode of TC11 titanium alloy [J]. China Measurement & Test, 2018, 44(10): 164–168. DOI: 10.11857/j.issn.1674-5124.2018.10.028.
    [22] 《中国航空材料手册》编辑委员会. 中国航空材料手册. 第4卷: 钛合金 铜合金[M]. 2版. 北京: 中国标准出版社, 2002: 172–198.

    Editorial Committee of China Aviation Materials Manual. China aeronautical materials handbook. volume 4: titanium alloy and copper alloy [M]. 2nd ed. Beijing: Standards Press of China, 2002: 172–198.
    [23] ZHANG J, WANG Y, ZAN X, et al. The constitutive responses of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si alloy at high strain rates and elevated temperatures [J]. Journal of Alloys and Compounds, 2015, 647: 97–104. DOI: 10.1016/j.jallcom.2015.05.131.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  32
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-29
  • 修回日期:  2023-12-11
  • 网络出版日期:  2024-02-29
  • 刊出日期:  2024-05-08

目录

    /

    返回文章
    返回