Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

海拔高度对长直坑道内爆炸冲击波传播的影响

李勇 雒泓宇 冯晓伟 胡宇鹏 张军 李海涛

黄亚峰, 田轩, 冯博, 王晓峰. 温压炸药爆炸性能实验研究[J]. 爆炸与冲击, 2016, 36(4): 573-576. doi: 10.11883/1001-1455(2016)04-0573-04
引用本文: 李勇, 雒泓宇, 冯晓伟, 胡宇鹏, 张军, 李海涛. 海拔高度对长直坑道内爆炸冲击波传播的影响[J]. 爆炸与冲击, 2024, 44(3): 032201. doi: 10.11883/bzycj-2023-0230
Huang Yafeng, Tian Xuan, Feng Bo, Wang Xiaofeng. Experimental study on explosion performance of thermobaric explosive[J]. Explosion And Shock Waves, 2016, 36(4): 573-576. doi: 10.11883/1001-1455(2016)04-0573-04
Citation: LI Yong, LUO Hongyu, FENG Xiaowei, HU Yupeng, ZHANG Jun, LI Haitao. Influence of altitude on the propagation of explosion shock waves in a long straight tunnel[J]. Explosion And Shock Waves, 2024, 44(3): 032201. doi: 10.11883/bzycj-2023-0230

海拔高度对长直坑道内爆炸冲击波传播的影响

doi: 10.11883/bzycj-2023-0230
基金项目: 国家重点研发计划青年科学家项目(2022YFC2905700);国家自然科学基金(12202424)
详细信息
    作者简介:

    李 勇(1985- ),男,博士,副教授,yong.li@cqu.edu.cn

    通讯作者:

    冯晓伟(1985- ),男,博士,副研究员,xiaowei_feng@126.com

  • 中图分类号: O382.1

Influence of altitude on the propagation of explosion shock waves in a long straight tunnel

  • 摘要: 为有效表征不同海拔坑道内爆炸冲击波的传播特征,利用非线性显式动力学有限元软件AUTODYN,研究了海拔高度对长直坑道内爆炸冲击波传播的影响规律,探讨了高海拔环境对坑道内冲击波传播的影响,基于量纲分析,建立了适用于不同海拔高度典型坑道内冲击波峰值超压的计算模型,并通过数值计算进行了验证。结果表明:随着海拔高度升高,坑道内爆炸冲击波波阵面传播速度与径向的冲击波参数偏差增大,平面波形成距离增加,冲击波峰值超压降低;在0~4000 m范围内,海拔高度每升高1000 m,冲击波冲量降低约0.91%。结合Sachs无量纲修正方法和量纲分析,推导出不同海拔高度冲击波峰值超压的理论分析模型,模型计算结果与数值计算结果的相对偏差不大于10%,能够为高海拔环境下坑道内爆炸冲击波的传播提供理论依据。
  • 温压炸药(thermobaric explosive,TBX)是一类能够充分利用压力效应和温度效应对目标造成毁伤的炸药。近几十年,温压炸药成为炸药研究的热点之一。A.Hahma等[1]通过测量冲击波超压研究, 比较了不同金属燃料对温压炸药TNT当量的影响;Zhang Fan等[2]利用大型爆炸罐, 研究了不同气氛条件下TNT基含铝炸药爆轰后的等静压、燃烧温度和爆炸火球状态;李秀丽等[3]采用红外热成像仪研究温压炸药的爆炸温度;阚金玲等[4-5]用红外热成像仪对温压炸药和普通炸药的火球特征参数进行了测量,发现温压炸药的能量远大于普通炸药;王晓峰等[6]根据量热法原理建立了在不同气氛条件下温压炸药爆炸能量的测量方法,用于定量评价温压炸药的爆炸总能量、爆轰能和后燃烧能。综上所述,现阶段温压炸药的研究重点是某种特定环境下能量释放规律的研究,而温压炸药是一种可以利用环境中部分氧来实现炸药能量的释放的含铝炸药,不同环境对炸药能量的释放具有不同的影响。本文中,拟采用自行设计的密闭爆炸装置对温压炸药在真空状态和空气状态下爆轰后的爆炸压力和爆炸温度进行实验测试,结合爆炸后气体产物的测试结果,分析环境状态对温压炸药爆炸性能的影响。

    实验原材料:奥克托今基温压炸药,铝粉质量分数为30%,理论密度为1.96 g/cm3。样品制备:将温压炸药采用模压方式压制成带8#雷管孔的药柱,药柱直径为25 mm,药柱质量为(25.000±0.050) g。

    实验装置如图 1所示,密闭爆炸装置为一钢结构的圆柱型弹体,其高为400 mm,外径为270 mm,内径为188 mm,内容积为5.8 L。本实验装置的温度传感器采用具有自恢复能力的快速反应钨铼热电偶,布置在距离端盖中心40 mm处,下端距离上端盖底部180 mm,响应时间达10-5 s;最大可耐压力达135 MPa;测温系统频带宽度为200 kHz;放大倍数为100,温度范围为-240~1 200 ℃, 精度小于1%。本实验装置的压力传感器采用超高温硅压阻传感器,布置在距离端盖中心40 mm处,其压力范围为0~140 MPa,精度小于1%。

    图  1  实验装置示意图
    Figure  1.  Schematics of experimental device

    真空环境下的实验步骤:

    首先, 将点火装置短路,把实验用温压炸药样品悬挂在距离上端盖20 cm处,再将起爆雷管接到点火装置上;

    然后, 将实验装置上端盖密封,用真空泵抽空爆炸罐内的空气,再向爆炸罐内缓慢充入氮气,如此循环3次,将爆炸罐内的氧气完全抽走,使爆炸罐内剩余气体的压力约为3 kPa,起爆实验样品,压力传感器和温度传感器记录50 s内的电信号数据;

    最后,通过通气装置,用气体采样袋采集反应后的气体样品,利用Clarus500气相色谱仪对爆轰后的N2、CO2、CO、CH4等主要气体产物进行定量分析。

    空气环境下的实验步骤:

    首先, 将点火装置短路,把实验用温压炸药样品悬挂在距离上端盖20 cm处,再将起爆雷管接到点火装置上;

    然后, 将实验装置上端盖密封,起爆实验样品,压力传感器和温度传感器记录50 s内的电信号数据;

    最后, 通过通气装置,用气体采样袋采集反应后的气体样品,利用Clarus500气相色谱仪对爆轰后的N2、CO2、CO、CH4等主要气体产物进行定量分析。

    实验得到的温压炸药真空和空气环境下爆炸压力的电压U信号与时间t的关系曲线如图 2所示。将图 2数据处理后可得到:真空环境下的入射峰值压力和平衡压力分别为4.44和0.25 MPa, 空气环境下的入射峰值压力和平衡压力分别为8.77和0.39 MPa。由此可知,空气环境下温压炸药的爆炸入射峰值压力比真空环境下的高97%。其原因是:在真空环境下,温压炸药爆炸能量没有传播的载体,只能依靠自身反应生成的气体向外膨胀来传播,因此炸药爆炸压力衰减迅速;在空气环境下,温压炸药爆炸能量可以通过空气向外传播,因此,其爆炸压力衰减相对真空环境衰减缓慢。空气环境下的平衡压力比真空环境下的高56%,这是由于在空气环境下,空气与温压炸药爆轰后的气体产物的摩尔量总和高于真空环境下温压炸药爆轰后的气体产物的摩尔量。

    图  2  温压炸药爆炸压力随时间的变化
    Figure  2.  Explosion pressure of thermobaric explosive varying with time

    实验得到的温压炸药真空和空气环境下爆炸温度的电压信号与时间的关系曲线如图 3所示。将图 3数据处理后可得入射峰值温度和平衡温度。真空环境下,温压炸药爆炸产物入射峰值温度为943 ℃,平衡温度为283 ℃;空气环境下,温压炸药爆炸产物入射峰值温度高于1 371 ℃,平衡温度为320 ℃。温压炸药在空气环境下的爆炸场峰值温度比真空环境下的高45%以上,温压炸药在空气环境下的平衡温度比真空环境下的高13%。其原因是:真空环境下,温压炸药中的单质炸药首先爆炸生成高温高压的气体产物,高温环境下其气体产物与铝粉发生氧化还原反应并放出热量,爆炸产物温度迅速上升,与此同时高温高压的气体产物不断对外膨胀做功输出能量,使爆炸产物温度下降,由于温度的下降以及氧化反应导致的产物中氧含量的降低制约了铝粉的反应放热,致使真空环境下爆炸温度随着爆炸产物的膨胀而迅速降低,直至达到温度平衡;而在空气环境下,温压炸药中的单质炸药首先爆炸生成高温高压的气体产物,高温环境下其气体产物与铝粉发生氧化还原反应并放出热量,爆炸产物温度迅速上升,与此同时高温高压的气体产物不断对外膨胀做功输出能量,在气体产物膨胀的过程中与空气充分混合提高了氧含量,可以促进铝粉的氧化反应,提高铝粉反应的完全性及放热量,因此,在爆炸产物膨胀至温度传感器时仍能保持比真空环境下较高的温度。

    图  3  温压炸药爆炸温度与时间关系
    Figure  3.  Explosion temperature of thermobaric explosive varying with time

    不同环境条件下,温压炸药爆炸后收集的气体产物气相色谱分析结果见表 1,表中各气体的含量是其摩尔量的百分比含量。由表 1中数据可知,空气环境下温压炸药的气体产物中CO2的含量明显低于真空环境下。按照温压炸药配方组成计算,25.00 g温压炸药,氧元素的物质的量为0.425 7 mol。温压炸药在空气环境下爆炸时,系统的氧元素的物质的量为0.519 7 mol。

    表  1  不同氛围下气体产物的摩尔分数
    Table  1.  Mole fraction of gas product under different conditions
    氛围 x(CH4)/% x(CO2)/% x(N2)/% x(CO)/%
    真空 0.625 0 3.617 5 42.764 1 25.803 3
    空气 1.551 5 0.029 2 33.556 9 26.283 2
    下载: 导出CSV 
    | 显示表格

    将炸药爆炸后的气体视为理想气体,按照实验测得的平衡状态下的压力和温度,通过理想气体状态方程计算气体产物的物质的量,以及结合表 1中数据计算得表 2。由表 2中数据可知,虽然空气环境下剩余氧元素的物质的量nrem(O)比真空环境下的高0.017 3 mol,由于空气环境下氧元素的总摩尔量nal(O)比真空环境下的高0.094 0 mol,因此,空气环境下实际参加氧化反应的氧元素的物质的量nrea(O)比真空环境下的多0.076 7 mol,正是由于这部分氧气参加氧化反应放出的热量使空气环境下的平衡温度比真空环境下的高37 ℃。

    表  2  不同氛围下气体产物的摩尔量
    Table  2.  Mole of gas product under different conditions
    氛围 nal(O)/mol n(CH4)/mol n(CO2)/mol n(N2)/mol n(CO)/mol nrem(O)/mol nrea(O)/mol
    真空 0.425 7 0.002 0 0.011 3 0.134 2 0.080 9 0.103 5 0.322 2
    空气 0.519 7 0.007 1 0.000 1 0.154 0 0.120 6 0.120 8 0.398 9
    下载: 导出CSV 
    | 显示表格

    通过测量25 g温压炸药真空和空气条件下在容积为5.8 L的密闭爆炸罐内爆轰后的爆炸压力和爆炸温度以及气态产物分析,得到以下结论:(1)温压炸药在空气环境下爆轰后的平衡压力和平衡温度明显高于真空环境下的平衡压力和平衡温度; (2)空气中的氧气参与了温压炸药第3阶段铝粉有氧燃烧反应,证明温压炸药在空气中爆轰存在明显的后燃效应。

  • 图  1  激波管试验装置示意图

    Figure  1.  Schematic diagram of experimental shock tube

    图  2  距端口680 mm处的冲击波超压测试曲线

    Figure  2.  Curve of shock wave overpressure at 680 mm from the port

    图  3  激波管二维轴对称模型

    Figure  3.  2D axisymmetric shock tube model

    图  4  超压时程曲线的数值计算与试验结果对比

    Figure  4.  Comparison between numerical simulation and experiment of overpressure-time curves

    图  5  坑道二维轴对称模型

    Figure  5.  2D axisymmetric tunnel model

    图  6  不同网格尺寸下的冲击波超压时程曲线

    Figure  6.  Overpressure-time curves with different grid sizes

    图  7  不同网格尺寸下的计算时间

    Figure  7.  Computation time with different grid sizes

    图  8  h = 3000 m 时冲击波压力云图

    Figure  8.  Pressure nephograms of shock wave at h = 3000 m

    图  9  不同海拔高度下的峰值超压

    Figure  9.  Peak overpressures at different altitudes

    图  10  各测点区间段内冲击波阵面的平均速度

    Figure  10.  Average velocities of shock wave in different intervals

    图  11  冲击波阵面到达时间的标准偏差

    Figure  11.  Standard deviation of shock wave front arrival time

    图  12  冲击波峰值超压平均值

    Figure  12.  Average of peak overpressures

    图  13  不同监测位置的波形对比

    Figure  13.  Comparison of shock waves at typical points

    图  14  不同监测位置的冲击波冲量

    Figure  14.  Shock wave impulses of typical points

    图  15  不同海拔高度下理论与数值计算峰值超压比较

    Figure  15.  Comparison of peak overpressure between theory and numerical simulation at different altitudes

    表  1  TNT炸药的模型参数

    Table  1.   Parameters of models for TNT

    ρTNT/(kg·m−3) D/(m·s−1) pC-J/GPa E0/GPa A/GPa B/GPa R1 R2 ω
    1630 6930 21 6 374 3.75 4.15 0.9 0.35
    下载: 导出CSV

    表  2  空气模型参数

    Table  2.   Parameters of models for air

    ρk/(kg·m−3) γ Tk/K cV/(J·kg−1·K−1) ek/(J·kg−1)
    1.225 1.4 288.2 717.6 2.068×105
    下载: 导出CSV

    表  3  4340钢模型参数

    Table  3.   Parameters of models for 4340 steel

    ρsteel/(kg·m-3) a/MPa b/MPa n c m ˙ε0/s−1 θm/K θr/K K/GPa
    7830 792 510 0.26 0.014 1.03 1 1793 288.2 159
    下载: 导出CSV

    表  4  海拔0 ~ 4000 m处的大气参数

    Table  4.   Parameters of the air at altitude from 0 to 4000 m

    h/m ρk-h/(kg·m−3) pk-h/kPa Tk-h/K ek-h/(kJ·kg−1)
    0 1.225 1013.25×102 288.15 2.068×102
    1000 1.112 898.75×102 281.65 2.021×102
    2000 1.006 794.95×102 275.15 1.974×102
    3000 0.909 701.08×102 268.65 1.928×102
    4000 0.819 616.40×102 262.15 1.881×102
    下载: 导出CSV

    表  5  不同网格尺寸下冲击波参数计算结果

    Table  5.   Simulated results of shock wave parameters with different grid sizes

    网格尺寸/mm x = 18 m x = 20 m
    ta/ms δta/% Δpm/MPa δΔpm/% ta/ms δta/% Δpm/MPa δΔpm/%
    50×50 18.180 5.46 0.464 16.55 20.990 6.12 0.420 17.81
    40×40 17.840 3.49 0.486 12.59 20.690 4.61 0.439 14.09
    30×30 17.720 2.79 0.511 8.09 20.290 2.59 0.456 10.76
    20×20 17.576 1.96 0.530 4.68 20.080 1.52 0.481 5.87
    10×10 17.350 0.65 0.537 3.42 19.832 0.27 0.494 3.33
    5×5 17.242 0.02 0.555 0.18 19.783 0.02 0.509 0.39
    2×2 17.239 0.556 19.779 0.511
    下载: 导出CSV

    表  6  不同海拔高度下平面波形成距离

    Table  6.   Plane wave formation distances at different altitudes

    h/m 0 1000 2000 3000 4000
    x/m 15.8 17.2 17.5 17.8 18.3
    下载: 导出CSV

    表  7  坑道内爆炸各物理量的量纲幂次

    Table  7.   Dimensional power coefficients of physical quantities in the problem of explosion in tunnel

    基本量纲 E pk-h ρk-h SΔx Δpm I ta
    M 1 1 1 0 1 1 0
    L 2 −1 −3 3 −1 −1 0
    T −2 2 0 0 −2 −1 1
    下载: 导出CSV

    表  8  坑道内爆炸各物理量的量纲幂次(初等变换)

    Table  8.   Dimensional power coefficients of physical quantities in the problem of explosion in tunnel (elemental transformation)

    参考物理量 E pk-h ρk-h SΔx Δpm I ta
    E 1 0 0 1 0 1/3 1/3
    pk-h 0 1 0 −1 1 1/6 −5/6
    ρk-h 0 0 1 0 0 1/2 1/2
    下载: 导出CSV
  • [1] 赵晓莉, 夏斌, 刘尊义, 等. 模拟高原环境对炸药爆速影响的试验研究 [J]. 爆破器材, 2015, 44(2): 36–39. DOI: 10.3969/j.issn.1001-8352.2015.02.009.

    ZHAO X L, XIA B, LIU Z Y, et al. Experimental research on detonation velocity of explosive in simulated plateau environment [J]. Explosive Materials, 2015, 44(2): 36–39. DOI: 10.3969/j.issn.1001-8352.2015.02.009.
    [2] 李秀地. T型坑道中爆炸冲击波传播规律的数值模拟 [J]. 后勤工程学院学报, 2011, 27(4): 8–12. DOI: 10.3969/j.issn.1672-7843.2011.04.002.

    LI X D. Numerical simulation for blast propagation and attenuation inside T-shaped tunnel from HE-charges detonation [J]. Journal of Logistical Engineering University, 2011, 27(4): 8–12. DOI: 10.3969/j.issn.1672-7843.2011.04.002.
    [3] 邓国强. 常规爆炸空气冲击波参数海拔高度影响分析 [J]. 防护工程, 2019, 41(3): 26–32.

    DENG G Q. Analysis on the altitude effects of air shock wave parameters of conventional explosion [J]. Protective Engineering, 2019, 41(3): 26–32.
    [4] BENSELAMA A M, WILLIAM-LOUIS M J P, MONNOYER F, et al. A numerical study of the evolution of the blast wave shape in tunnels [J]. Journal of Hazardous Materials, 2010, 181(1): 609–616. DOI: 10.1016/j.jhazmat.2010.05.056.
    [5] UYSTEPRUYST D, MONNOYER F. A numerical study of the evolution of the blast wave shape in rectangular tunnels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 225–231. DOI: 10.1016/j.jlp.2015.03.003.
    [6] 杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40.

    YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40.
    [7] 李秀地, 郑颖人, 李列胜, 等. 长坑道中化爆冲击波压力传播规律的数值模拟 [J]. 爆破器材, 2005, 34(5): 4–7. DOI: 10.3969/j.issn.1001-8352.2005.05.002.

    LI X D, ZHENG Y R, LI L S, et al. Simulation of the pressure attenuation of chemical shock wave in long tunnels [J]. Explosive Materials, 2005, 34(5): 4–7. DOI: 10.3969/j.issn.1001-8352.2005.05.002.
    [8] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. Berlin: Springer, 1962: 107–118. DOI: 10.1007/978-3-642-86682-1.
    [9] 刘晶波, 闫秋实, 伍俊. 坑道内爆炸冲击波传播规律的研究 [J]. 振动与冲击, 2009, 28(6): 8–11. DOI: 10.3969/j.issn.1000-3835.2009.06.003.

    LIU J B, YAN Q S, WU J. Analysis of blast wave propagation inside tunnels [J]. Journal of Vibration and Shock, 2009, 28(6): 8–11. DOI: 10.3969/j.issn.1000-3835.2009.06.003.
    [10] 耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究 [J]. 振动与冲击, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.

    GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of Vibration and Shock, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.
    [11] 张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.

    ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.
    [12] 胡涛, 蒋海燕, 吴国东, 等. 坑道内爆炸平面波形成位置的数值分析 [J]. 火炸药学报, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.

    HU T, JIANG H Y, WU G D, et al. Numerical analysis of the formation position of the explosion plane wave in the tunnel [J]. Chinese Journal of Explosives & Propellants, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.
    [13] IZADIFARD R A, FOROUTAN M. Blastwave parameters assessment at different altitude using numerical simulation [J]. Turkish Journal of Engineering and Environmental Sciences, 2010, 34(1): 25–41. DOI: 10.3906/muh-0911-39.
    [14] 李科斌, 李晓杰, 闫鸿浩, 等. 不同真空度下空中爆炸近场特性的数值模拟研究 [J]. 振动与冲击, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.

    LI K B, LI X J, YAN H H, et al. Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum [J]. Journal of Vibration and Shock, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.
    [15] 李志敏, 汪旭光, 汪泉, 等. 负压环境对炸药爆炸冲击波影响的实验研究 [J]. 火炸药学报, 2021, 44(1): 35–40. DOI: 10.14077/j.issn.1007-7812.202007025.

    LI Z M, WANG X G, WANG Q, et al. Experimental study on the effect of negative pressure environment on explosion shock wave [J]. Chinese Journal of Explosives & Propellants, 2021, 44(1): 35–40. DOI: 10.14077/j.issn.1007-7812.202007025.
    [16] 陈龙明, 李志斌, 陈荣, 等. 高原环境爆炸冲击波传播特性的实验研究 [J]. 爆炸与冲击, 2022, 42(5): 053206. DOI: 10.11883/bzycj-2021-0279.

    CHEN L M, LI Z B, CHEN R, et al. An experimental study on propagation characteristics of blast waves under plateau environment [J]. Explosion and Shock Waves, 2022, 42(5): 053206. DOI: 10.11883/bzycj-2021-0279.
    [17] SACHS R G. The dependence of blast on ambient pressure and temperature: 466 [R]. Aberdeen Proving Ground: Ballistic Research Laboratories, 1944. DOI: 10.21236/ada800535.
    [18] WANG F Q, WANG Q, WANG Y J, et al. Propagation rules of shock waves in confined space under different initial pressure environments [J]. Scientific Reports, 2022, 12(1): 14352. DOI: 10.1038/s41598-022-18567-0.
    [19] 汪泉, 陆军伟, 李志敏, 等. 负压条件下柱形爆炸罐内爆炸波传播规律 [J]. 兵工学报, 2021, 42(6): 1250–1256. DOI: 10.3969/j.issn.1000-1093.2021.06.015.

    WANG Q, LU J W, LI Z M, et al. Propagation law of explosion wave in columnar explosion tank under vacuum conditions [J]. Acta Armamentarii, 2021, 42(6): 1250–1256. DOI: 10.3969/j.issn.1000-1093.2021.06.015.
    [20] 李孝臣, 汪泉, 谢守冬, 等. 负压条件下球形爆炸容器内乳化炸药冲击波参数研究 [J]. 火炸药学报, 2023, 46(3): 252–259. DOI: 10.14077/j.issn.1007-7812.202207001.

    LI X C, WANG Q, XIE S D, et al. Study of shock wave parameters of emulsified explosives in spherical explosive containers under negative-pressure conditions [J]. Chinese Journal of Explosives & Propellants, 2023, 46(3): 252–259. DOI: 10.14077/j.issn.1007-7812.202207001.
    [21] 张广华, 李彪彪, 沈飞, 等. 真空条件下炸药爆炸特性试验研究 [J]. 火炸药学报, 2020, 43(3): 308–313. DOI: 10.14077/j.issn.1007-7812.201903005.

    ZHANG G H, LI B B, SHEN F, et al. Experimental research on the explosion performance of explosives under vacuum conditions [J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 308–313. DOI: 10.14077/j.issn.1007-7812.201903005.
    [22] 吴勇. 负压环境对乳化炸药爆轰性能影响及爆炸焊接应用研究 [D]. 安徽, 淮南: 安徽理工大学, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000418.

    WU Y. Effect of negative pressure on detonation performance of emulsion explosive and application of explosive welding [D]. Huainan, Anhui: Anhui University of Science & Technology, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000418.
    [23] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. Livermore: Lawrence Radiation Laboratory, University of California, 1968. DOI: 10.2172/4783904.
    [24] JOHN SHEPHERD P. A course in theoretical physics [M]. Chichester: John Wiley & Sons, Ltd. , 2013: 116–117. DOI: 10.1002/9781118516911.
    [25] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [26] 张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.

    ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube [J]. Equipment Environmental Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.
    [27] 高轩能, 吴彦捷. TNT爆炸的数值计算及其影响因素 [J]. 火炸药学报, 2015, 38(3): 32–39. DOI: 10.14077/j.issn.1007-7812.2015.03.006.

    GAO X N, WU Y J. Numerical calculation and influence parameters for TNT explosion [J]. Chinese Journal of Explosives & Propellants, 2015, 38(3): 32–39. DOI: 10.14077/j.issn.1007-7812.2015.03.006.
    [28] 尤祖明, 祝逢春, 王永旭, 等. 模拟高原环境条件下C5-C6燃料的爆轰特性研究 [J]. 爆炸与冲击, 2018, 38(6): 1303–1309. DOI: 10.11883/bzycj-2017-0185.

    YOU Z M, ZHU F C, WANG Y X, et al. Detonation characteristics of C5-C6 fuels under simulated plateau-condition [J]. Explosion and Shock Waves, 2018, 38(6): 1303–1309. DOI: 10.11883/bzycj-2017-0185.
    [29] 高玉刚, 赵晓莉, 徐龙, 等. 高海拔压力环境对炸药猛度影响的实验研究 [J]. 火工品, 2013(5): 36–39. DOI: 10.3969/j.issn.1003-1480.2013.05.009.

    GAO Y G, ZHAO X L, XU L, et al. Experimental research on brisance of explosive in simulated high altitude environment [J]. Initiators & Pyrotechnics, 2013(5): 36–39. DOI: 10.3969/j.issn.1003-1480.2013.05.009.
    [30] 李瑞, 李孝臣, 汪泉, 等. 低温和低压环境下炸药爆炸冲击波的传播特性 [J]. 爆炸与冲击, 2023, 43(2): 022301. DOI: 10.11883/bzycj-2022-0188.

    LI R, LI X C, WANG Q, et al. Propagation characteristics of blast wave in diminished ambient temperature and pressure environments [J]. Explosion and Shock Waves, 2023, 43(2): 022301. DOI: 10.11883/bzycj-2022-0188.
    [31] LEMONS D S. A student's guide to dimensional analysis [M]. Cambridge: Cambridge University Press, 2017: 33–48. DOI: 10.1017/9781316676165.
    [32] RAMAMURTHI K. TNT equivalence and yield from explosions [M]// RAMAMURTHI K. Modeling Explosions and Blast Waves. Cham: Springer International Publishing, 2021: 309–319. DOI: 10.1007/978-3-030-74338-3_12.
  • 期刊类型引用(12)

    1. 刘泉,姚箭,宋先钊,蒋欣利,李斌,王永旭,张丹,解立峰,张国凯. 初始环境压力对RDX基温压炸药冲击波超压和温度的影响. 北京理工大学学报. 2024(09): 913-922 . 百度学术
    2. 张思维,张鹏程,王子,彭文联,谈玲华,张兴高. 温压炸药配方及毁伤评估研究进展. 兵工学报. 2024(S1): 147-160 . 百度学术
    3. 刘超龙,叶阳,曾亚武,程树范. 气体密度和初压对炸药爆炸压力衰减的影响. 中国安全生产科学技术. 2022(11): 126-132 . 百度学术
    4. 李志敏,汪旭光,汪泉,陆军伟,林朝键,刘文震. 负压环境对炸药爆炸冲击波影响的实验研究. 火炸药学报. 2021(01): 35-40 . 百度学术
    5. 孙立鹏,王少娟,谭小艳,向凯轮,王晓峰. 一种温压炸药的爆热表征与影响因素分析. 化学推进剂与高分子材料. 2021(06): 52-55 . 百度学术
    6. 郭涛,张启威,原景超. 密闭立方体爆炸冲击波数值模拟分析. 电子技术应用. 2020(04): 57-60 . 百度学术
    7. 张广华,李彪彪,沈飞,王胜强,王辉. 真空条件下炸药爆炸特性试验研究. 火炸药学报. 2020(03): 308-313 . 百度学术
    8. 张龙,廖旭东,张宝国,张东亮,赵艳,孔德骞. 有限空间爆炸瞬态温度的动态补偿方法研究. 传感技术学报. 2020(06): 861-866 . 百度学术
    9. 张继军,张东亮,赵建伟,张宝国,崔云霄. 小比距离密闭空腔爆炸爆后气体温度和压力测量技术研究. 爆炸与冲击. 2019(02): 104-109 . 本站查看
    10. 张广华,屈可朋,沈飞,王辉. 组合装药的撞击安全性与内爆威力试验研究. 高压物理学报. 2019(04): 175-181 . 百度学术
    11. 何宁,向聪,李伟,张奇. 硝基甲烷与铝粉混合物燃爆特性实验研究. 兵工学报. 2018(01): 111-117 . 百度学术
    12. 许珂,李秀地,毛怀源,芦天翊. 坑道内温压炸药冲击波传播特性的试验研究. 爆破. 2018(03): 42-48 . 百度学术

    其他类型引用(3)

  • 加载中
图(15) / 表(8)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  87
  • PDF下载量:  113
  • 被引次数: 15
出版历程
  • 收稿日期:  2023-06-29
  • 修回日期:  2023-11-20
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2024-03-14

目录

/

返回文章
返回