Influence of altitude on the propagation of explosion shock waves in a long straight tunnel
-
摘要: 为有效表征不同海拔坑道内爆炸冲击波的传播特征,利用非线性显式动力学有限元软件AUTODYN,研究了海拔高度对长直坑道内爆炸冲击波传播的影响规律,探讨了高海拔环境对坑道内冲击波传播的影响,基于量纲分析,建立了适用于不同海拔高度典型坑道内冲击波峰值超压的计算模型,并通过数值计算进行了验证。结果表明:随着海拔高度升高,坑道内爆炸冲击波波阵面传播速度与径向的冲击波参数偏差增大,平面波形成距离增加,冲击波峰值超压降低;在0~4000 m范围内,海拔高度每升高1000 m,冲击波冲量降低约0.91%。结合Sachs无量纲修正方法和量纲分析,推导出不同海拔高度冲击波峰值超压的理论分析模型,模型计算结果与数值计算结果的相对偏差不大于10%,能够为高海拔环境下坑道内爆炸冲击波的传播提供理论依据。Abstract: To effectively characterize the propagation characteristics of the explosion shock waves in tunnels at different altitudes, nonlinear explicit dynamics finite element software AUTODYN and dimensional analysis were used to study the influence of altitude on the propagation of explosion shock waves in long straight tunnels, and the influence characteristics of high altitude environments on the propagation of shock waves in tunnels were explored. First of all, the accuracy of the computational method was verified by comparing the peak overpressure and the time of overpressure rise of the small-scale shock tube test and the numerical simulation at the same measurement point. Then based on the AUTODYN-2D Euler symmetric algorithm and standard atmospheric parameters, the shock wave parameters of TNT explosion with 10 kg TNT spherical charge explosion in a tunnel with a diameter of 2.5 m and a length of 40 m at altitudes from 0 to 4000 m were computed, which were arranged with gauges with an axial interval of 2 m and a radial interval of 0.25 m, such as plane wave formation distance, peak overpressure, shock wave front propagation velocity, impulse, etc. In the end, a polynomial theoretic calculation model for shock wave peak overpressure in a tunnel at different altitudes was proposed with coefficients least-squares fitted from numerical simulation data at sea level, and the variables were obtained by dimensional analysis and the extended Sachs scaling law. The results show that, with the increase of altitude, the deviations between the propagation velocity of the explosion shock wave front and the radial parameters of the shock wave in the tunnel increases, the formation distance of the plane wave increases, and the peak overpressure of the shock wave decreases. Within the altitude range of 0 to 4000 m, the average value of shock wave impulse decreases by about 0.91% for every 1000 m increase. By combining the extended Sachs scaling law with dimensional analysis, a theoretical analysis model for calculating peak overpressure of shock waves at different altitudes with no more than 10% deviation is derived, which can provide a theoretical basis for explosion shock wave propagation in tunnels at high altitudes.
-
Key words:
- altitude /
- tunnel /
- explosion shock wave /
- dimensional analysis /
- propagation property
-
表 1 TNT炸药的模型参数
Table 1. Parameters of models for TNT
ρTNT/(kg·m−3) D/(m·s−1) pC-J/GPa E0/GPa A/GPa B/GPa R1 R2 ω 1630 6930 21 6 374 3.75 4.15 0.9 0.35 表 2 空气模型参数
Table 2. Parameters of models for air
ρk/(kg·m−3) γ Tk/K ${c_V}$/(J·kg−1·K−1) ek/(J·kg−1) 1.225 1.4 288.2 717.6 2.068×105 表 3 4340钢模型参数
Table 3. Parameters of models for 4340 steel
ρsteel/(kg·m-3) a/MPa b/MPa n c m $ {\dot \varepsilon _0} $/s−1 θm/K θr/K K/GPa 7830 792 510 0.26 0.014 1.03 1 1793 288.2 159 表 4 海拔0 ~ 4000 m处的大气参数
Table 4. Parameters of the air at altitude from 0 to 4000 m
h/m ρk-h/(kg·m−3) pk-h/kPa Tk-h/K ek-h/(kJ·kg−1) 0 1.225 1013.25×102 288.15 2.068×102 1000 1.112 898.75×102 281.65 2.021×102 2000 1.006 794.95×102 275.15 1.974×102 3000 0.909 701.08×102 268.65 1.928×102 4000 0.819 616.40×102 262.15 1.881×102 表 5 不同网格尺寸下冲击波参数计算结果
Table 5. Simulated results of shock wave parameters with different grid sizes
网格尺寸/mm x = 18 m x = 20 m ta/ms $\delta_{t_{\mathrm{a}}} $/% Δpm/MPa $\delta_{\Delta_{p_{\mathrm{m}}}}$/% ta/ms $\delta_{t_{\mathrm{a}}} $/% Δpm/MPa $\delta_{\Delta_{p_{\mathrm{m}}}} $/% 50×50 18.180 5.46 0.464 16.55 20.990 6.12 0.420 17.81 40×40 17.840 3.49 0.486 12.59 20.690 4.61 0.439 14.09 30×30 17.720 2.79 0.511 8.09 20.290 2.59 0.456 10.76 20×20 17.576 1.96 0.530 4.68 20.080 1.52 0.481 5.87 10×10 17.350 0.65 0.537 3.42 19.832 0.27 0.494 3.33 5×5 17.242 0.02 0.555 0.18 19.783 0.02 0.509 0.39 2×2 17.239 0.556 19.779 0.511 表 6 不同海拔高度下平面波形成距离
Table 6. Plane wave formation distances at different altitudes
h/m 0 1000 2000 3000 4000 x/m 15.8 17.2 17.5 17.8 18.3 表 7 坑道内爆炸各物理量的量纲幂次
Table 7. Dimensional power coefficients of physical quantities in the problem of explosion in tunnel
基本量纲 E pk-h ρk-h SΔx Δpm I ta M 1 1 1 0 1 1 0 L 2 −1 −3 3 −1 −1 0 T −2 2 0 0 −2 −1 1 表 8 坑道内爆炸各物理量的量纲幂次(初等变换)
Table 8. Dimensional power coefficients of physical quantities in the problem of explosion in tunnel (elemental transformation)
参考物理量 E pk-h ρk-h SΔx Δpm I ta E 1 0 0 1 0 1/3 1/3 pk-h 0 1 0 −1 1 1/6 −5/6 ρk-h 0 0 1 0 0 1/2 1/2 -
[1] 赵晓莉, 夏斌, 刘尊义, 等. 模拟高原环境对炸药爆速影响的试验研究 [J]. 爆破器材, 2015, 44(2): 36–39. DOI: 10.3969/j.issn.1001-8352.2015.02.009.ZHAO X L, XIA B, LIU Z Y, et al. Experimental research on detonation velocity of explosive in simulated plateau environment [J]. Explosive Materials, 2015, 44(2): 36–39. DOI: 10.3969/j.issn.1001-8352.2015.02.009. [2] 李秀地. T型坑道中爆炸冲击波传播规律的数值模拟 [J]. 后勤工程学院学报, 2011, 27(4): 8–12. DOI: 10.3969/j.issn.1672-7843.2011.04.002.LI X D. Numerical simulation for blast propagation and attenuation inside T-shaped tunnel from HE-charges detonation [J]. Journal of Logistical Engineering University, 2011, 27(4): 8–12. DOI: 10.3969/j.issn.1672-7843.2011.04.002. [3] 邓国强. 常规爆炸空气冲击波参数海拔高度影响分析 [J]. 防护工程, 2019, 41(3): 26–32.DENG G Q. Analysis on the altitude effects of air shock wave parameters of conventional explosion [J]. Protective Engineering, 2019, 41(3): 26–32. [4] BENSELAMA A M, WILLIAM-LOUIS M J P, MONNOYER F, et al. A numerical study of the evolution of the blast wave shape in tunnels [J]. Journal of Hazardous Materials, 2010, 181(1): 609–616. DOI: 10.1016/j.jhazmat.2010.05.056. [5] UYSTEPRUYST D, MONNOYER F. A numerical study of the evolution of the blast wave shape in rectangular tunnels [J]. Journal of Loss Prevention in the Process Industries, 2015, 34: 225–231. DOI: 10.1016/j.jlp.2015.03.003. [6] 杨科之, 杨秀敏. 坑道内化爆冲击波的传播规律 [J]. 爆炸与冲击, 2003, 23(1): 37–40.YANG K Z, YANG X M. Shock waves propagation inside tunnels [J]. Explosion and Shock Waves, 2003, 23(1): 37–40. [7] 李秀地, 郑颖人, 李列胜, 等. 长坑道中化爆冲击波压力传播规律的数值模拟 [J]. 爆破器材, 2005, 34(5): 4–7. DOI: 10.3969/j.issn.1001-8352.2005.05.002.LI X D, ZHENG Y R, LI L S, et al. Simulation of the pressure attenuation of chemical shock wave in long tunnels [J]. Explosive Materials, 2005, 34(5): 4–7. DOI: 10.3969/j.issn.1001-8352.2005.05.002. [8] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. Berlin: Springer, 1962: 107–118. DOI: 10.1007/978-3-642-86682-1. [9] 刘晶波, 闫秋实, 伍俊. 坑道内爆炸冲击波传播规律的研究 [J]. 振动与冲击, 2009, 28(6): 8–11. DOI: 10.3969/j.issn.1000-3835.2009.06.003.LIU J B, YAN Q S, WU J. Analysis of blast wave propagation inside tunnels [J]. Journal of Vibration and Shock, 2009, 28(6): 8–11. DOI: 10.3969/j.issn.1000-3835.2009.06.003. [10] 耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究 [J]. 振动与冲击, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005.GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of Vibration and Shock, 2017, 36(5): 23–29. DOI: 10.13465/j.cnki.jvs.2017.05.005. [11] 张玉磊, 王胜强, 袁建飞, 等. 方形坑道内爆炸冲击波传播规律 [J]. 含能材料, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305.ZHANG Y L, WANG S Q, YUAN J F, et al. Experimental study on the propagation law of blast waves in a square tunnel [J]. Chinese Journal of Energetic Materials, 2020, 28(1): 46–51. DOI: 10.11943/CJEM2018305. [12] 胡涛, 蒋海燕, 吴国东, 等. 坑道内爆炸平面波形成位置的数值分析 [J]. 火炸药学报, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022.HU T, JIANG H Y, WU G D, et al. Numerical analysis of the formation position of the explosion plane wave in the tunnel [J]. Chinese Journal of Explosives & Propellants, 2023, 46(7): 632–638. DOI: 10.14077/j.issn.1007-7812.202211022. [13] IZADIFARD R A, FOROUTAN M. Blastwave parameters assessment at different altitude using numerical simulation [J]. Turkish Journal of Engineering and Environmental Sciences, 2010, 34(1): 25–41. DOI: 10.3906/muh-0911-39. [14] 李科斌, 李晓杰, 闫鸿浩, 等. 不同真空度下空中爆炸近场特性的数值模拟研究 [J]. 振动与冲击, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.LI K B, LI X J, YAN H H, et al. Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum [J]. Journal of Vibration and Shock, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038. [15] 李志敏, 汪旭光, 汪泉, 等. 负压环境对炸药爆炸冲击波影响的实验研究 [J]. 火炸药学报, 2021, 44(1): 35–40. DOI: 10.14077/j.issn.1007-7812.202007025.LI Z M, WANG X G, WANG Q, et al. Experimental study on the effect of negative pressure environment on explosion shock wave [J]. Chinese Journal of Explosives & Propellants, 2021, 44(1): 35–40. DOI: 10.14077/j.issn.1007-7812.202007025. [16] 陈龙明, 李志斌, 陈荣, 等. 高原环境爆炸冲击波传播特性的实验研究 [J]. 爆炸与冲击, 2022, 42(5): 053206. DOI: 10.11883/bzycj-2021-0279.CHEN L M, LI Z B, CHEN R, et al. An experimental study on propagation characteristics of blast waves under plateau environment [J]. Explosion and Shock Waves, 2022, 42(5): 053206. DOI: 10.11883/bzycj-2021-0279. [17] SACHS R G. The dependence of blast on ambient pressure and temperature: 466 [R]. Aberdeen Proving Ground: Ballistic Research Laboratories, 1944. DOI: 10.21236/ada800535. [18] WANG F Q, WANG Q, WANG Y J, et al. Propagation rules of shock waves in confined space under different initial pressure environments [J]. Scientific Reports, 2022, 12(1): 14352. DOI: 10.1038/s41598-022-18567-0. [19] 汪泉, 陆军伟, 李志敏, 等. 负压条件下柱形爆炸罐内爆炸波传播规律 [J]. 兵工学报, 2021, 42(6): 1250–1256. DOI: 10.3969/j.issn.1000-1093.2021.06.015.WANG Q, LU J W, LI Z M, et al. Propagation law of explosion wave in columnar explosion tank under vacuum conditions [J]. Acta Armamentarii, 2021, 42(6): 1250–1256. DOI: 10.3969/j.issn.1000-1093.2021.06.015. [20] 李孝臣, 汪泉, 谢守冬, 等. 负压条件下球形爆炸容器内乳化炸药冲击波参数研究 [J]. 火炸药学报, 2023, 46(3): 252–259. DOI: 10.14077/j.issn.1007-7812.202207001.LI X C, WANG Q, XIE S D, et al. Study of shock wave parameters of emulsified explosives in spherical explosive containers under negative-pressure conditions [J]. Chinese Journal of Explosives & Propellants, 2023, 46(3): 252–259. DOI: 10.14077/j.issn.1007-7812.202207001. [21] 张广华, 李彪彪, 沈飞, 等. 真空条件下炸药爆炸特性试验研究 [J]. 火炸药学报, 2020, 43(3): 308–313. DOI: 10.14077/j.issn.1007-7812.201903005.ZHANG G H, LI B B, SHEN F, et al. Experimental research on the explosion performance of explosives under vacuum conditions [J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 308–313. DOI: 10.14077/j.issn.1007-7812.201903005. [22] 吴勇. 负压环境对乳化炸药爆轰性能影响及爆炸焊接应用研究 [D]. 安徽, 淮南: 安徽理工大学, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000418.WU Y. Effect of negative pressure on detonation performance of emulsion explosive and application of explosive welding [D]. Huainan, Anhui: Anhui University of Science & Technology, 2022. DOI: 10.26918/d.cnki.ghngc.2022.000418. [23] LEE E L, HORNIG H C, KURY J W. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. Livermore: Lawrence Radiation Laboratory, University of California, 1968. DOI: 10.2172/4783904. [24] JOHN SHEPHERD P. A course in theoretical physics [M]. Chichester: John Wiley & Sons, Ltd. , 2013: 116–117. DOI: 10.1002/9781118516911. [25] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9. [26] 张军, 黄含军, 王军评, 等. 炸药驱动式爆炸管的载荷计算 [J]. 装备环境工程, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004.ZHANG J, HUANG H J, WANG J P, et al. Simulation on the blast load inside the explosively drived shock tube [J]. Equipment Environmental Engineering, 2021, 18(5): 21–27. DOI: 10.7643/issn.1672-9242.2021.05.004. [27] 高轩能, 吴彦捷. TNT爆炸的数值计算及其影响因素 [J]. 火炸药学报, 2015, 38(3): 32–39. DOI: 10.14077/j.issn.1007-7812.2015.03.006.GAO X N, WU Y J. Numerical calculation and influence parameters for TNT explosion [J]. Chinese Journal of Explosives & Propellants, 2015, 38(3): 32–39. DOI: 10.14077/j.issn.1007-7812.2015.03.006. [28] 尤祖明, 祝逢春, 王永旭, 等. 模拟高原环境条件下C5-C6燃料的爆轰特性研究 [J]. 爆炸与冲击, 2018, 38(6): 1303–1309. DOI: 10.11883/bzycj-2017-0185.YOU Z M, ZHU F C, WANG Y X, et al. Detonation characteristics of C5-C6 fuels under simulated plateau-condition [J]. Explosion and Shock Waves, 2018, 38(6): 1303–1309. DOI: 10.11883/bzycj-2017-0185. [29] 高玉刚, 赵晓莉, 徐龙, 等. 高海拔压力环境对炸药猛度影响的实验研究 [J]. 火工品, 2013(5): 36–39. DOI: 10.3969/j.issn.1003-1480.2013.05.009.GAO Y G, ZHAO X L, XU L, et al. Experimental research on brisance of explosive in simulated high altitude environment [J]. Initiators & Pyrotechnics, 2013(5): 36–39. DOI: 10.3969/j.issn.1003-1480.2013.05.009. [30] 李瑞, 李孝臣, 汪泉, 等. 低温和低压环境下炸药爆炸冲击波的传播特性 [J]. 爆炸与冲击, 2023, 43(2): 022301. DOI: 10.11883/bzycj-2022-0188.LI R, LI X C, WANG Q, et al. Propagation characteristics of blast wave in diminished ambient temperature and pressure environments [J]. Explosion and Shock Waves, 2023, 43(2): 022301. DOI: 10.11883/bzycj-2022-0188. [31] LEMONS D S. A student's guide to dimensional analysis [M]. Cambridge: Cambridge University Press, 2017: 33–48. DOI: 10.1017/9781316676165. [32] RAMAMURTHI K. TNT equivalence and yield from explosions [M]// RAMAMURTHI K. Modeling Explosions and Blast Waves. Cham: Springer International Publishing, 2021: 309–319. DOI: 10.1007/978-3-030-74338-3_12.