冲击载荷作用下钽电容的电压瞬变特性及微观机理

王家乐 李洪伟 王小兵 梁昊 周恩 苏洪 赵金耀

王家乐, 李洪伟, 王小兵, 梁昊, 周恩, 苏洪, 赵金耀. 冲击载荷作用下钽电容的电压瞬变特性及微观机理[J]. 爆炸与冲击, 2024, 44(4): 043101. doi: 10.11883/bzycj-2023-0232
引用本文: 王家乐, 李洪伟, 王小兵, 梁昊, 周恩, 苏洪, 赵金耀. 冲击载荷作用下钽电容的电压瞬变特性及微观机理[J]. 爆炸与冲击, 2024, 44(4): 043101. doi: 10.11883/bzycj-2023-0232
WANG Jiale, LI Hongwei, WANG Xiaobing, LIANG Hao, ZHOU En, SU Hong, ZHAO Jinyao. Voltage transient characteristics and microscopic mechanism of tantalum capacitors under impact load[J]. Explosion And Shock Waves, 2024, 44(4): 043101. doi: 10.11883/bzycj-2023-0232
Citation: WANG Jiale, LI Hongwei, WANG Xiaobing, LIANG Hao, ZHOU En, SU Hong, ZHAO Jinyao. Voltage transient characteristics and microscopic mechanism of tantalum capacitors under impact load[J]. Explosion And Shock Waves, 2024, 44(4): 043101. doi: 10.11883/bzycj-2023-0232

冲击载荷作用下钽电容的电压瞬变特性及微观机理

doi: 10.11883/bzycj-2023-0232
基金项目: 国家自然科学基金(52104074)
详细信息
    作者简介:

    王家乐(1999- ),男,硕士研究生,872646853@qq.com

    通讯作者:

    李洪伟(1979- ),男,硕士生导师,教授,lihw@aust.edu.cn

  • 中图分类号: O383

Voltage transient characteristics and microscopic mechanism of tantalum capacitors under impact load

  • 摘要: 为探究钽电容在冲击载荷作用下的失效机制,设计并开展了5组不同强度的钽电容水下爆炸冲击实验,研究了冲击载荷作用下钽电容的电压瞬变特性,通过漏电、充电电流变化分析了钽电容的失效模式,利用扫描电镜观察钽电容的微观结构,讨论了冲击载荷作用下钽电容的失效机理。结果表明:钽电容受冲击后发生短路失效,电压大幅度降低,在自愈完成后电压缓慢上升。随着冲击波超压的增大,钽电容失效的概率增大,钽电容失效的临界超压约为32 MPa。不同类型的电压变化对应不同的失效模式,包括击穿后瞬间自愈、击穿后缓慢自愈和多次击穿自愈。不同类型电压变化的初始漏电电流峰值有较大差别,Ⅰ类电流峰值为2.5~5 A,Ⅱ类为1~2 A,Ⅲ类为8~9 A,且峰值越大,峰宽越小。冲击载荷作用下钽电容的微观失效机理与其氧化膜的瑕疵相关,机理包括氧化膜中微裂缝扩展使得局部电场强度超过击穿场强造成击穿、氧化膜较薄区域下方的杂质及晶态膜突出形成导电通道、贯穿型裂缝形成后气体电离导致的击穿。
  • 图  1  实验测试系统

    Figure  1.  Experimental test system

    图  2  电路示意图

    Figure  2.  Circuit diagram

    图  3  冲击波超压计算值与实测值的对比

    Figure  3.  Comparison of calculated and measured shock wave overpressures

    图  4  冲击载荷下钽电容的电压变化曲线

    Figure  4.  Voltage change curves of a tantalum capacitor under impact load

    图  5  不同类型的电压变化在钽电容与爆源不同水平距离下出现的频次

    Figure  5.  Frequencies of different types of voltage changes occurring at different horizontal distances between tantalum capacitor and explosion source

    图  6  冲击载荷下漏电-充电电流变化曲线

    Figure  6.  Change curves of leak and charge currents under impact load

    图  7  漏电电流时间响应特性曲线

    Figure  7.  Leakage current time response characteristic curves

    图  8  钽电容损伤部位形貌

    Figure  8.  Topography of tantalum capacitor damage site

    图  9  冲击载荷下钽电容失效-修复机制

    Figure  9.  Failure-repair mechanism of tantalum capacitors under impact loads

    表  1  电容参数

    Table  1.   Capacitor parameters

    电容类型耐压/V容值/μF封装规格阳极材料阴极材料介电层数量
    贴片钽电容25477343TaMnO2Ta2O550
    下载: 导出CSV

    表  2  不同距离下的冲击波超压

    Table  2.   Shock wave overpressures at different distances

    距离/cm冲击波超压/MPa冲击波超压平均值/MPa
    第1次测量第2次测量第3次测量
    1338.62738.04538.55738.410
    1436.15737.21936.35836.578
    1531.97432.31231.84532.044
    1630.14629.41829.02229.529
    1924.71925.76725.05725.181
    下载: 导出CSV
  • [1] 杨文, 岳彩新, 宋家良, 等. 工业电子雷管抗冲击性能试验研究 [J]. 火工品, 2022(2): 16–19. DOI: 10.3969/j.issn.1003-1480.2022.02.004.

    YANG W, YUE C X, SONG J L, et al. Experimental research on the impact resistance of industrial electronic detonators [J]. Initiators and Pyrotechnics, 2022(2): 16–19. DOI: 10.3969/j.issn.1003-1480.2022.02.004.
    [2] 刘忠民, 杨年华, 石磊, 等. 电子雷管小孔距爆破拒爆试验研究 [J]. 爆破器材, 2021, 50(5): 39–42, 49. DOI: 10.3969/j.issn.1001-8352.2021.05.007.

    LIU Z M, YANG N H, SHI L, et al. Experimental study on misfire in small hole-space blasting of electronic detonator [J]. Explosive Materials, 2021, 50(5): 39–42, 49. DOI: 10.3969/j.issn.1001-8352.2021.05.007.
    [3] TEVEROVSKY A. Effect of mechanical stresses on characteristics of chip tantalum capacitors [J]. IEEE Transactions on Device and Materials Reliability, 2007, 7(3): 399–406. DOI: 10.1109/TDMR.2007.907289.
    [4] 程融, 张永录. 某型电子干扰弹引信用固体钽电容器失效分析 [J]. 国防技术基础, 2009(8): 28–30.

    CHEN R, ZHANG Y L. Some electronic countermeasure ball blasting fuse uses the solid tantalum capacitor failure analysis [J]. Technology Foundation of National Defence, 2009(8): 28–30.
    [5] 李长龙, 高世桥, 牛少华, 等. 高冲击下引信用固态钽电容的参数变化 [J]. 爆炸与冲击, 2018, 38(2): 419–425. DOI: 10.11883/bzycj-2016-0222.

    LI C L, GAO S Q, NIU S H, et al. Parameters variation of solid tantalum capacitors used in fuze under high- g shock [J]. Explosion and Shock Waves, 2018, 38(2): 419–425. DOI: 10.11883/bzycj-2016-0222.
    [6] 李长龙, 高世桥, 牛少华, 等. 高冲击环境对引信用储能电容性能的影响 [J]. 兵工学报, 2016, 37(S2): 16–22.

    LI C L, GAO S Q, NIU S H, et al. Effect of high- g shock environment on performances of energy-storage capacitors used in fuse [J]. Acta Armamentarii, 2016, 37(S2): 16–22.
    [7] 贾丰州, 牛少华, 孙远程, 等. 冲击载荷作用下的固体钽电容力-电响应特性 [J]. 探测与控制学报, 2022, 44(5): 20–25.

    JIA F Z, NIU S H, SUN Y C, et al. Solid tantalum capacitance force-electrical response characteristics of impact load [J]. Journal of Detection and Control, 2022, 44(5): 20–25.
    [8] COLE R H. Underwater explosions[M]. New Jersey: Princeton University Press, 1948.
    [9] TEVEROVSKY A. Breakdown and self-healing in tantalum capacitors [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(2): 663–671. DOI: 10.1109/TDEI.2020.009240.
    [10] TEVEROVSKY A. Scintillation and surge current breakdown voltages in solid tantalum capacitors [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1134–1142. DOI: 10.1109/TDEI.2009.5211867.
    [11] VERMILYEA D A. The effect of metal surface condition on the anodic oxidation of tantalum [J]. Acta Metallurgica, 1954, 2(3): 476–481. DOI: 10.1016/0001-6160(54)90069-3.
    [12] 潘齐凤. 片式钽电容器浪涌电流失效研究[D]. 成都: 电子科技大学, 2012.
    [13] EZHILVALAVAN S, TSENG T Y. Conduction mechanisms in amorphous and crystalline Ta2O5 thin films [J]. Journal of Applied Physics, 1998, 83(9): 4797–4801. DOI: 10.1063/1.367272.
    [14] MIYAIRI K. Electrical breakdown and electroluminescence in tantalum pentoxide films [C]//Conference on Electrical Insulation and Dielectric Phenomena. Ottawa, ON, Canada: Institute of Electrical and Electronics Engineers, 2002. DOI: 10.1109/CEIDP.1988.26332.
    [15] JACOB K T, KUMAR A, RAJITHA G, et al. Thermodynamic data for Mn3O4, Mn2O3 and MnO2 [J]. High Temperature Materials and Processes, 2012, 30(4): 459–472. DOI: 10.1515/HTMP.2011.069.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  56
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-30
  • 修回日期:  2023-11-14
  • 网络出版日期:  2023-11-15
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回