循环冲击下大理岩的损伤力学行为及能量耗散特性

王志亮 汪大为 汪书敏 巫绪涛

王志亮, 汪大为, 汪书敏, 巫绪涛. 循环冲击下大理岩的损伤力学行为及能量耗散特性[J]. 爆炸与冲击, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243
引用本文: 王志亮, 汪大为, 汪书敏, 巫绪涛. 循环冲击下大理岩的损伤力学行为及能量耗散特性[J]. 爆炸与冲击, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243
WANG Zhiliang, WANG Dawei, WANG Shumin, WU Xutao. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading[J]. Explosion And Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243
Citation: WANG Zhiliang, WANG Dawei, WANG Shumin, WU Xutao. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading[J]. Explosion And Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243

循环冲击下大理岩的损伤力学行为及能量耗散特性

doi: 10.11883/bzycj-2023-0243
基金项目: 国家自然科学基金(12272119,U1965101)
详细信息
    作者简介:

    王志亮(1969- ),男,博士,教授,博士生导师,cvewzL@hfut.edu.cn

  • 中图分类号: O383

Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading

  • 摘要: 为了研究循环冲击荷载作用下大理岩的动态力学行为和能量耗散特性,首先采用分离式霍普金森压杆,通过试冲法确定出5种代表性的入射子弹速度,据此完成了大理岩试样的等幅循环冲击试验,并对试样的应力均匀性进行了检验。接着,从应变率时程曲线、应力-应变关系、冲击次数和能量耗散特性等方面对测试数据进行了系统分析。最后,基于能量演化定义损伤变量,探讨了能量耗散与岩样损伤发展之间的关联机制。结果表明:试样应变率时程曲线在低弹速下会出现变化率恒定的平台段,应力-应变曲线在峰后阶段均产生一定的回弹;随着循环次数的增加,试样峰值应力总体减小,而峰值应变、平均应变率和累积比能量吸收值则变化趋势相反,且在临近破坏或开裂前其变化速率呈现突增现象;峰值应力与平均应变率存在明显的线性关系,弹性模量随平均应变率的变化整体上符合指数衰减规律;试样的耗散比能与平均应变率之间呈线性正相关,基于能量耗散定义的损伤变量可以较好地表征该大理岩试样动载下的损伤破坏过程。
  • 图  1  大理岩试样

    Figure  1.  Marble specimens

    图  2  SHPB装置

    Figure  2.  The SHPB device

    图  3  弹速为7.5 m/s时第1次冲击荷载下试样的动态应力平衡检验曲线

    Figure  3.  Dynamic stress balance test curves of the specimen under the first impact loading at the projectile velocity of 7.5 m/s

    图  4  试样S18在弹速8.0 m/s循环冲击下的应力波形

    Figure  4.  Stress waveforms in specimen S18 under cyclic impact with the projectile velocity of 8.0 m/s

    图  5  弹速为6.5 m/s时试样的应变率时程曲线

    Figure  5.  Strain-rate history curves of the specimen at the projectile velocity of 6.5 m/s

    图  6  弹速为7.0 m/s时试样的应变率时程曲线

    Figure  6.  Strain-rate history curves of the specimen at the projectile velocity of 7.0 m/s

    图  7  弹速为7.5 m/s时试样的应变率时程曲线

    Figure  7.  Strain-rate history curves of the specimen at the projectile velocity of 7.5 m/s

    图  8  弹速为8.0 m/s时试样的应变率时程曲线

    Figure  8.  Strain-rate history curves of the specimen at the projectile velocity of 8.0 m/s

    图  9  弹速为8.5 m/s时试样的应变率时程曲线

    Figure  9.  Strain-rate history curves of the specimen at the projectile velocity of 8.5 m/s

    图  10  在6.5 m/s的弹速循环冲击下试样的应力-应变曲线

    Figure  10.  Stress-strain curves of the specimen under cyclical impact loading at the projectile velocity of 6.5 m/s

    图  11  在7.0 m/s的弹速循环冲击下试样的应力-应变曲线

    Figure  11.  Stress-strain curves of the specimen under cyclical impact loading at the projectile velocity of 7.0 m/s

    图  12  在7.5 m/s的弹速循环冲击下试样的应力-应变曲线

    Figure  12.  Stress-strain curves of the specimen under cyclical impact loading at the projectile velocity of 7.5 m/s

    图  13  在8.0 m/s的弹速循环冲击下试样的应力-应变曲线

    Figure  13.  Stress-strain curves of the specimen under cyclical impact loading at the projectile velocity of 8.0 m/s

    图  14  在8.5 m/s的弹速循环冲击下试样的应力-应变曲线

    Figure  14.  Stress-strain curves of the specimen under cyclical impact loading at the projectile velocity of 8.5 m/s

    图  15  不同冲击速度下试样的破坏形态

    Figure  15.  Failure modes of specimens under different impact velocities

    图  16  峰值应力随冲击次数的变化

    Figure  16.  Variation of peak stress with impact times

    图  17  峰值应变随冲击次数的变化

    Figure  17.  Variation of peak strain with impact times

    图  18  平均应变率与冲击次数的关系

    Figure  18.  Relationship of average strain rate with impact times

    图  19  峰值应力与平均应变率的关系

    Figure  19.  Relation of peak stress with average strain rate

    图  20  弹性模量与平均应变率的关系

    Figure  20.  Relation of elastic modulus with average strain rate

    图  21  不同冲击速度下累积耗散比能与冲击次数的关系

    Figure  21.  Relation of cumulative specific dissipated energy with impact times under different impact velocities

    图  22  耗散比能与平均应变率的关系

    Figure  22.  Relation of specific dissipated energy with average strain rate

    图  23  损伤变量与冲击次数的关系

    Figure  23.  Relation of damage variable with impact times

    图  24  损伤变量与累积耗散比能的关系

    Figure  24.  Relation of damage variable with cumulative specific dissipated energy

    表  1  试样基本参数

    Table  1.   Basic physical parameters of the specimens

    试样 高度/mm 直径/mm 密度/(g·cm−3) 声速/(m·s−1) 试样 高度/mm 直径/mm 密度/(g·cm−3) 声速/(m·s−1)
    S2 25.10 49.40 2.82 5390 S17 25.12 49.52 2.79 4850
    S4 24.94 49.40 2.83 5390 S18 24.94 49.32 2.84 5110
    S5 25.18 49.48 2.79 4970 S19 25.20 49.40 2.82 5110
    S7 25.30 49.36 2.80 5180 S20 24.94 49.42 2.80 5110
    S9 25.18 49.54 2.80 5390 S21 24.92 49.38 2.83 4970
    S12 25.10 49.50 2.79 5390 S23 24.92 49.32 2.83 5240
    S14 24.94 49.36 2.83 5240 S24 24.92 49.28 2.84 4970
    S16 25.10 49.36 2.82 4970
    下载: 导出CSV

    表  2  循环冲击的基本参数

    Table  2.   Basic parameters of cyclic impacts

    试样 平均弹速/(m·s−1) 最大循环冲击次数N 入射波幅值/MPa
    S21 8.51 4 75.25
    S23 8.53 2 76.96
    S24 8.52 2 77.03
    S18 8.10 4 71.99
    S19 8.09 4 70.12
    S20 8.13 3 72.56
    S2 7.53 4 64.98
    S4 7.52 6 63.91
    S5 7.50 6 63.76
    S7 6.98 9 61.57
    S9 7.14 12 60.88
    S12 7.09 12 60.92
    S14 6.55 10 51.88
    S16 6.51 23 50.22
    S17 6.52 21 50.74
    下载: 导出CSV

    表  3  循环冲击后试样力学参数

    Table  3.   Mechanical parameters of specimens after cyclic impact

    试样 总冲击次数 经历的冲击次数 峰值应力/MPa 峰值应变/10−3 弹性模量/GPa
    S4 6 1 68.73 2.36 41.83
    6 58.26 7.90 9.62
    S12 12 1 61.32 2.25 42.80
    6 63.84 2.53 38.75
    11 55.33 6.06 11.47
    S17 21 1 52.79 2.16 37.53
    6 49.92 2.12 26.94
    11 51.78 1.85 23.7
    16 51.95 3.31 21.63
    21 44.05 6.36 8.52
    下载: 导出CSV
  • [1] LUO Y, GONG F Q, LI X B, et al. Experimental simulation investigation of influence of depth on spalling characteristics in circular hard rock tunnel [J]. Journal of Central South University, 2020, 27(3): 891–910. DOI: 10.1007/s11771-020-4339-5.
    [2] WANG S F, HUANG L Q, LI X B. Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress [J]. Tunnelling and Underground Space Technology, 2020, 96: 103195. DOI: 10.1016/j.tust.2019.103195.
    [3] DU K, YANG C Z, SU R, et al. Failure properties of cubic granite, marble, and sandstone specimens under true triaxial stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104309. DOI: 10.1016/j.ijrmms.2020.104309.
    [4] HAO H, WU C, SEAH C C. Numerical analysis of blast-induced stress waves in a rock mass with anisotropic continuum damage models. part 2: stochastic approach [J]. Rock Mechanics and Rock Engineering, 2002, 35(2): 95–108. DOI: 10.1007/s006030200013.
    [5] 李夕兵, 宫凤强, ZHAO J, 等. 一维动静组合加载下岩石冲击破坏试验研究 [J]. 岩石力学与工程学报, 2010, 29(2): 251–260.

    LI X B, GONG F Q, ZHAO J, et al. Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 251–260.
    [6] 宫凤强, 陆道辉, 李夕兵, 等. 不同应变率下砂岩动态强度准则的试验研究 [J]. 岩土力学, 2013, 34(9): 2433–2441. DOI: 10.16285/j.rsm.2013.09.007.

    GONG F Q, LU D H, LI X B, et al. Experimental research of sandstone dynamic strength criterion under different strain rates [J]. Rock and Soil Mechanics, 2013, 34(9): 2433–2441. DOI: 10.16285/j.rsm.2013.09.007.
    [7] 平琦, 马芹永, 卢小雨, 等. 被动围压条件下岩石材料冲击压缩试验研究 [J]. 振动与冲击, 2014, 33(2): 55–59. DOI: 10.3969/j.issn.1000-3835.2014.02.011.

    PING Q, MA Q Y, LU X Y, et al. Impact compression test of rock material under passive confining pressure conditions [J]. Journal of Vibration and Shock, 2014, 33(2): 55–59. DOI: 10.3969/j.issn.1000-3835.2014.02.011.
    [8] 李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405. DOI: 10.13722/j.cnki.jrme.2017.0539.

    LI X F, LI H B, LIU K, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. DOI: 10.13722/j.cnki.jrme.2017.0539.
    [9] YANG R S, LI W Y, YUE Z W. Comparative study on dynamic mechanical properties and energy dissipation of rocks under impact loads [J]. Shock and Vibration, 2020, 2020: 8865099. DOI: 10.1155/2020/8865099.
    [10] SONG Y Q, MA H F, YANG J K, et al. Dynamic mechanical behaviors and failure mechanism of lignite under SHPB compression test [J]. Sustainability, 2022, 14(17): 10528. DOI: 10.3390/SU141710528.
    [11] ZHAO H H, LIU C, ZHANG J, et al. Breakage behavior of gravel rock particles under impact force [J]. Computational Particle Mechanics, 2021, 8(5): 1075–1087. DOI: 10.1007/s40571-021-00393-2.
    [12] 王彤, 宋战平, 杨建永. 循环冲击作用下风化红砂岩动态响应特性 [J]. 岩石力学与工程学报, 2019, 38(S1): 2772–2778. DOI: 10.13722/j.cnki.jrme.2018.1448.

    WANG T, SONG Z P, YANG J Y. Dynamic response characteristics of weathered red sandstone under cyclic impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2772–2778. DOI: 10.13722/j.cnki.jrme.2018.1448.
    [13] 金解放, 李夕兵, 常军然, 等. 循环冲击作用下岩石应力应变曲线及应力波特性 [J]. 爆炸与冲击, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.

    JIN J F, LI X B, CHANG J R, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings [J]. Explosion and Shock Waves, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
    [14] 闫雷, 刘连生, 李仕杰, 等. 单轴循环冲击下弱风化花岗岩的损伤演化 [J]. 爆炸与冲击, 2020, 40(5): 053303. DOI: 10.11883/bzycj-2019-0354.

    YAN L, LIU L S, LI S J, et al. Damage evolution of weakly-weathered granite under uniaxial cyclic impact [J]. Explosion and Shock Waves, 2020, 40(5): 053303. DOI: 10.11883/bzycj-2019-0354.
    [15] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [16] 王志亮, 杨辉, 田诺成. 单轴循环冲击下花岗岩力学特性与损伤演化机理 [J]. 哈尔滨工业大学学报, 2020, 52(2): 59–66. DOI: 10.11918/201811085.

    WANG Z L, YANG H, TIAN N C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
    [17] 唐礼忠, 王春, 程露萍, 等. 一维静载及循环冲击共同作用下矽卡岩力学特性试验研究 [J]. 中南大学学报(自然科学版), 2015, 46(10): 3898–3906. DOI: 10.11817/j.issn.1672-7207.2015.10.045.

    TANG L Z, WANG C, CHENG L P, et al. Experimental study of mechanical characteristics of skarn under one-dimensional coupled static and cyclic impact loads [J]. Journal of Central South University (Science and Technology), 2015, 46(10): 3898–3906. DOI: 10.11817/j.issn.1672-7207.2015.10.045.
    [18] 许金余, 吕晓聪, 张军, 等. 围压条件下岩石循环冲击损伤的能量特性研究 [J]. 岩石力学与工程学报, 2010, 29(S2): 4159–4165.

    XU J Y, LÜ X C, ZHANG J, et al. Research on energy properties of rock cyclical impact damage under confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4159–4165.
    [19] ZHOU Y Q, SHENG Q, LI N N, et al. The relationship between dynamic strength and strain rate and damage to rock materials subjected to dynamic cyclic loading [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(3): 88. DOI: 10.1007/S40948-021-00287-W.
    [20] 中国岩石力学与工程学会. 岩石动力特性试验规程: T/CSRME 001-2019 [S]. 北京: 中国标准出版社, 2020.

    Chinese Society for Rock Mechanics and Engineering. Technical specification for testing method of rock dynamic properties: T/CSRME 001-2019 [S]. Beijing: Standards Press of China, 2020.
    [21] WANG Z L, SHI G Y. Effect of heat treatment on dynamic tensile strength and damage behavior of medium-fine-grained Huashan granite [J]. Experimental Techniques, 2017, 41(4): 365–375. DOI: 10.1007/s40799-017-0180-7.
    [22] 田诺成, 王志亮, 熊峰, 等. 循环冲击荷载下轴压对花岗岩动力学特性的影响 [J]. 哈尔滨工业大学学报, 2021, 53(5): 156–164. DOI: 10.11918/201908134.

    TIAN N C, WANG Z L, XIONG F, et al. Influence of axial pressure on dynamic mechanical properties of granite under cyclic impact loading [J]. Journal of Harbin Institute of Technology, 2021, 53(5): 156–164. DOI: 10.11918/201908134.
    [23] ZHANG Z X, KOU S Q, JIANG L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 745–762. DOI: 10.1016/S1365-1609(00)00008-3.
    [24] 朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.

    ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
    [25] 余永强, 张文龙, 范利丹, 等. 冲击荷载下煤系砂岩应变率效应及能量耗散特征 [J]. 煤炭学报, 2021, 46(7): 2281–2293. DOI: 10.13225/j.cnki.jccs.2020.0440.

    YU Y Q. ZHANG W L, FAN L D, et al. Strain rate effect and energy dissipation characteristics of sandstone in coal measures under impact loading [J]. Journal of China Coal Society, 2021, 46(7): 2281–2293. DOI: 10.13225/j.cnki.jccs.2020.0440.
    [26] 谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析 [J]. 岩石力学与工程学报, 2004, 23(21): 3565–3570. DOI: 10.3321/j.issn:1000-6915.2004.21.001.

    XIE H P, PENG R D, JU Y. Energy dissipation of rock deformation and fracture [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565–3570. DOI: 10.3321/j.issn:1000-6915.2004.21.001.
    [27] RAN Q C, LIANG Y P, ZOU Q L, et al. Experimental investigation on mechanical characteristics of red sandstone under graded cyclic loading and its inspirations for stability of overlying strata [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 11. DOI: 10.1007/S40948-023-00555-X.
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  60
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-10
  • 修回日期:  2024-01-10
  • 网络出版日期:  2024-01-16
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回