带刚性防波板罐体内液体晃动的响应分析

平凯 王琼瑶 祁文超 陈馨儿

平凯, 王琼瑶, 祁文超, 陈馨儿. 带刚性防波板罐体内液体晃动的响应分析[J]. 爆炸与冲击, 2024, 44(6): 065103. doi: 10.11883/bzycj-2023-0250
引用本文: 平凯, 王琼瑶, 祁文超, 陈馨儿. 带刚性防波板罐体内液体晃动的响应分析[J]. 爆炸与冲击, 2024, 44(6): 065103. doi: 10.11883/bzycj-2023-0250
PING Kai, WANG Qiongyao, QI Wenchao, CHEN Xiner. Response analysis of liquid sloshing in a tank with rigid baffles[J]. Explosion And Shock Waves, 2024, 44(6): 065103. doi: 10.11883/bzycj-2023-0250
Citation: PING Kai, WANG Qiongyao, QI Wenchao, CHEN Xiner. Response analysis of liquid sloshing in a tank with rigid baffles[J]. Explosion And Shock Waves, 2024, 44(6): 065103. doi: 10.11883/bzycj-2023-0250

带刚性防波板罐体内液体晃动的响应分析

doi: 10.11883/bzycj-2023-0250
基金项目: 国家自然科学基金(51905384);广东省自然科学基金(2024A1515010431)
详细信息
    作者简介:

    平 凯(1997- ),男,硕士研究生,pingkai_luck@163.com

    通讯作者:

    王琼瑶(1987- ),男,博士,副教授,hellowqy@163.com

  • 中图分类号: O359.1

Response analysis of liquid sloshing in a tank with rigid baffles

  • 摘要: 部分充液罐体内的液体在外部激励的作用下容易出现晃动现象,由液体晃动产生的附加力和力矩会对载液罐车产生不利影响。为了避免液罐车制动时其罐内液体产生较大幅度的晃动,提出了几种类型的防波板,并研究了防波板及其几何参数对液罐车内液体晃动的影响。首先,建立了基于有限体积法的液体晃动的数值模型。其次,对液体晃动现象进行了一系列的实验,通过将实验获得的液面波形与同等条件下数值模拟获得的结果进行对比,验证数值模型的有效性。最后,将验证后的数值模型用于分析防波板的几何参数对液体晃动响应的影响。研究结果表明,开孔防波板不仅可以有效降低罐内晃动响应参数的峰值,还可以明显缩短罐内晃动液体达到稳定的时间;防波板的开孔位置和孔的数量在车辆制动过程中对罐体内液体晃动引起的纵向力的峰值影响差别不大,但是对液体晃动引起的俯仰力矩的峰值的影响比较明显;晃动响应参数峰值的下降率会随着充液高度的增加呈先下降后上升的趋势,液体晃动引起的俯仰力矩的峰值取得最大值时,防波板对罐体内的液体晃动的抑制效果最差。
  • 图  1  力、力矩以及质心的计算

    Figure  1.  Calculation of force, moment, and center of mass

    图  2  数值模型建立流程

    Figure  2.  Flow chart for establishing numerical model

    图  3  固有频率验证

    Figure  3.  Natural frequency verification

    图  4  实验结果与仿真结果的对比

    Figure  4.  Comparison between experimental and simulation results

    图  5  实验装置

    Figure  5.  Experimental setup

    图  6  加速度变化的时间历程

    Figure  6.  Time history of acceleration

    图  7  数值模拟(左)和实验(右)得到的自由液面图像(液高7 $ \mathrm{c}\mathrm{m} $

    Figure  7.  Numerical simulation (left) and experimental (right) free surface images (liquid height 7$ \mathrm{c}\mathrm{m} $)

    图  8  罐体模型纵向截面

    Figure  8.  Longitudinal section of the tank model

    图  9  防波板的开孔位置和开孔数量

    Figure  9.  Position and number of holes on the baffle

    图  10  圆滑过渡的斜坡阶跃加速度激励

    Figure  10.  Rounded ramp-step acceleration excitation

    图  11  网格尺寸的无关性验证

    Figure  11.  Time history of longitudinal force variation under different mesh sizes

    图  12  时间步长的无关性检验

    Figure  12.  Time history of longitudinal force variation under different time steps

    图  13  晃动响应参数峰值

    Figure  13.  Peak values of sloshing response parameters

    图  14  T0和T2b罐内晃动响应参数变化的时间历程

    Figure  14.  Time history of sloshing response parameters in T0 and T2b tanks

    图  15  晃动响应参数峰值的下降率

    Figure  15.  Decrease rate of the peak values of sloshing response parameters

    图  16  T1和T2b罐内晃动响应参数峰值相对于T0罐的下降率

    Figure  16.  Decrease rate of peak values of sloshing response parameters of T1 and T2b relative to T0 tank

    图  17  自由液面变形

    Figure  17.  Free surface deformation

    表  1  T1和T2b晃动响应参数峰值相对于T0罐的下降率

    Table  1.   Decrease rate of the peak sloshing response parameters of T1 and T2b relative to T0 tank

    充液比/% T1相对于T0的下降率/% T2b相对于T0的下降率/%
    纵向力 俯仰力矩 载荷转移 纵向力 俯仰力矩 载荷转移
    40 27.8 23.6 26.6 29.6 31.9 34.4
    60 29.3 21.9 19.4 29.7 29.6 28.8
    80 30.0 38.0 45.4 32.4 53.4 68.2
    下载: 导出CSV

    表  2  T1和T2b罐晃动响应参数峰值

    Table  2.   Peak values of sloshing response parameters of T1 and T2b tanks

    充液高度/m T1罐晃动响应参数峰值 T2b罐晃动响应参数峰值
    纵向力/kN 俯仰力矩/(kN·m) 载荷转移/m 纵向力/kN 俯仰力矩/(kN·m) 载荷转移/m
    0.715 23.7 105.8 1.56 23.4 88.1 1.26
    0.815 28.6 130.6 1.58 27.7 112.5 1.35
    0.915 32.9 147.0 1.50 33.0 133.8 1.35
    1.015 38.5 153.6 1.34 37.6 138.2 1.19
    1.115 42.7 155.7 1.18 42.2 142.3 1.06
    1.215 46.7 149.1 0.97 45.9 130.1 0.82
    1.315 50.4 135.8 0.75 48.3 113.6 0.60
    下载: 导出CSV
  • [1] JIANG Z, SHI Z, JIANG H, et al. Investigation of the load and flow characteristics of variable mass forced sloshing [J]. Physics of Fluids, 2023, 35(3): 033325. DOI: 10.1063/5.0142148.
    [2] KIM S P, CHUNG S M, SHIN W J, et al. Experimental study on sloshing reduction effects of baffles linked to a spring system [J]. Ocean Engineering, 2018, 170: 136–147. DOI: 10.1016/j.oceaneng.2018.10.001.
    [3] MARTINEZ-CARRASCAL J, GONZALEZ L M. On the experimental scaling and power dissipation of violent sloshing flows [J]. Journal of Fluids and Structures, 2022, 115: 103763. DOI: 10.1016/j.jfluidstructs.2022.103763.
    [4] 刘汉武, 张华, 胡震宇, 等. 基于SPH方法航天器含贮箱液体晃动分离动力学研究 [J]. 中国科学: 技术科学, 2021, 51(8): 938–947. DOI: 10.1360/SST-2021-0123.

    LIU H W, ZHANG H, HU Z Y, et al. Simulation analysis of liquid sloshing separation in spacecraft with tank based on SPH method [J]. Scientia Sinica Technologica, 2021, 51(8): 938–947. DOI: 10.1360/SST-2021-0123.
    [5] 林晓冬, 张锐, 刘芳, 等. 基于变分模态分解的复杂航天器姿态扰动分析 [J]. 振动与冲击, 2023, 42(13): 303–309. DOI: 10.13465/j.cnki.jvs.2023.13.036.

    LIN X D, ZHANG R, LIU F, et al. Attitude disturbance analysis for complex spacecraft based on variational mode decomposition [J]. Journal of Virbation and Shock, 2023, 42(13): 303–309. DOI: 10.13465/j.cnki.jvs.2023.13.036.
    [6] LI X S, REN Y Y, ZHENG X L, et al. Model-free adaptive control for tank truck rollover stabilization [J]. Mathematical Problems in Engineering, 2021, 2021: 1–16. DOI: 10.1155/2021/8417071.
    [7] 杨秀建, 吴相稷, 邢云祥, 等. 非满载液罐半挂汽车列车侧向耦合动力学模型 [J]. 中国公路学报, 2018, 31(11): 244–254. DOI: 10.3969/j.issn.1001-7372.2018.11.026.

    YANG X J, WU X J, XING Y X, et al. Lateral dynamics modeling for partly filled tractor sem-trailer tank vehicle [J]. China Journal of Highway and Transport, 2018, 31(11): 244–254. DOI: 10.3969/j.issn.1001-7372.2018.11.026.
    [8] 包文红, 张应龙, 班涛, 等. 液罐车内液体晃动对防波板的冲击仿真 [J]. 油气储运, 2022, 41(9): 1087–1094. DOI: 10.6047/j.issn.1000-8241.2022.09.012.

    BAO W H, ZHANG Y L, BAN T, et al. Simulation on impact of liquid sloshing on baffles in liquid tankers [J]. Oil & Gas Storage and Transportation, 2022, 41(9): 1087–1094. DOI: 10.6047/j.issn.1000-8241.2022.09.012.
    [9] IRANITALAB A, KHATTAK A, BAHOUTH G. Statistical modeling of cargo tank truck crashes: rollover and release of hazardous materials [J]. Journal of Safety Research, 2020, 74: 71–79. DOI: 10.1016/j.jsr.2020.04.010.
    [10] CAVALAGLI N, BISCARINI C, FACCI A L, et al. Experimental and numerical analysis of energy dissipation in a sloshing absorber [J]. Journal of Fluids and Structures, 2017, 68: 466–481. DOI: 10.1016/j.jfluidstructs.2016.11.020.
    [11] POGULURI S K, CHO I H. Liquid sloshing in a rectangular tank with vertical slotted porous screen: based on analytical, numerical, and experimental approach [J]. Ocean Engineering, 2019, 189: 106373. DOI: 10.1016/j.oceaneng.2019.106373.
    [12] FAN X S, HU Z H, ZHENG X. Research on influence of tank sloshing on ship motion response under different wavelengths [J]. Applied Sciences, 2022, 12(17): 8647. DOI: 10.3390/app12178647.
    [13] YE W B, LIU J, LIN G, et al. High performance analysis of lateral sloshing response in vertical cylinders with dual circular or arc-shaped porous structures [J]. Applied Ocean Research, 2018, 81: 47–71. DOI: 10.1016/j.apor.2018.09.017.
    [14] SHAO J R, LI S M, LI Z R, et al. A comparative study of different baffles on mitigating liquid sloshing in a rectangular tank due to a horizontal excitation [J]. Engineering Computations, 2015, 32(4): 1172–1190. DOI: 10.1108/ec-12-2014-0251.
    [15] BAI W, LIU X, KOH C G. Numerical study of violent LNG sloshing induced by realistic ship motions using level set method [J]. Ocean Engineering, 2015, 97: 100–113. DOI: 10.1016/j.oceaneng.2015.01.010.
    [16] WEN X, ZHAO W W, WAN D C. Multi-phase moving particle semi-implicit method for violent sloshing flows [J]. European Journal of Mechanics-B/Fluids, 2022, 95: 1–22. DOI: 10.1016/j.euromechflu.2022.04.002.
    [17] ZHANG A M, LI S M, CUI P, et al. A unified theory for bubble dynamics [J]. Physics of Fluids, 2023, 35(3): 033323. DOI: 10.1063/5.0145415.
    [18] LI S M, ZHANG A M, CUI P, et al. Vertically neutral collapse of a pulsating bubble at the corner of a free surface and a rigid wall [J]. Journal of Fluid Mechanics, 2023, 962: A28. DOI: 10.1017/jfm.2023.292.
    [19] MA C L, XIONG C W, MA G W. Numerical study on suppressing violent transient sloshing with single and double vertical baffles [J]. Ocean Engineering, 2021, 223: 108557. DOI: 10.1016/j.oceaneng.2020.108557.
    [20] RAKHEJA S, SANKAR S, RANGANATHAN R. Roll plane analysis of articulated tank vehicles during steady turning [J]. Vehicle System Dynamics, 1988, 17(1/2): 81–104. DOI: 10.1080/00423118808968896.
    [21] FANG Q, SUN J, QIU H X, et al. Experimental investigation of liquid sloshing in cylindrical tank with ring baffles under seismic excitation [J]. Arabian Journal for Science and Engineering, 2022, 48(4): 4785–4794. DOI: 10.1007/s13369-022-07182-w.
    [22] WANG Q Y, LIN G M, JIANG L, et al. Numerical and experimental study of anti-slosh performance of combined baffles in partially filled tank vehicles [J]. International Journal of Pressure Vessels and Piping, 2022, 196: 104555. DOI: 10.1016/j.ijpvp.2021.104555.
    [23] XUE M A, ZHENG J, LIN P, et al. Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank [J]. Journal of Ocean University of China, 2017, 16(4): 661–673. DOI: 10.1007/s11802-017-3383-8.
    [24] 曾宪君, 黄志涛, 邵家儒, 等. 基于SPH方法的罐式贮箱动力响应及稳定性研究 [J]. 机床与液压, 2021, 49(14): 24–30, 59. DOI: 10.3969/j.issn.1001-3881.2021.14.005.

    ZENG X J, HUANG Z T, SHAO J R, et al. Dynamic response and stability analysis of storage tank based on SPH method [J]. Machine Tool & Hydraulics, 2021, 49(14): 24–30, 59. DOI: 10.3969/j.issn.1001-3881.2021.14.005.
    [25] JIN X, LIU M, ZHANG F, et al. Mitigation of liquid sloshing by multiple layers of dual horizontal baffles with equal/unequal baffle widths [J]. Ocean Engineering, 2022, 263: 112184. DOI: 10.1016/j.oceaneng.2022.112184.
    [26] ZHANG E H, ZHU W Y, WANG L H. Influencing analysis of different baffle factors on oil liquid sloshing in automobile fuel tank [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(13): 3180–3193. DOI: 10.1177/0954407020919584.
    [27] TSAO W H, HUANG L H, HWANG W S. An equivalent mechanical model with nonlinear damping for sloshing rectangular tank with porous media [J]. Ocean Engineering, 2021, 242: 110145. DOI: 10.1016/j.oceaneng.2021.110145.
    [28] REN Y, KHAYYER A, LIN P, et al. Numerical modeling of sloshing flow interaction with an elastic baffle using SPHinXsys [J]. Ocean Engineering, 2023, 267: 113110. DOI: 10.1016/j.oceaneng.2022.113110.
    [29] WANG Q Y, JIANG L, CHAI M, et al. Numerical and experimental analysis of the effect of elastic membrane on liquid sloshing in partially filled tank vehicles [J]. Mechanics Based Design of Structures and Machines, 2021, 51(3): 1741–1757. DOI: 10.1080/15397734.2021.1875844.
    [30] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 液化气体汽车罐车: GB/T 19905—2017 [S]. 北京: 中国标准出版社, 2017.
    [31] ROMERO J A, HILDEBRAND R, MARTINEZ M, et al. Natural sloshing frequencies of liquid cargo in road tankers [J]. International Journal of Heavy Vehicle Systems, 2005, 12(2): 121–138. DOI: 10.1504/IJHVS.2005.006379.
    [32] XUE M A, ZHENG J, LIN P. Numerical simulation of sloshing phenomena in cubic tank with multiple baffles [J]. Journal of Applied Mathematics, 2012, 2012: 1–21. DOI: 10.1155/2012/245702.
    [33] 王琼瑶, 蒋开洪, RAKHEJA S, 等. 部分充液罐车内液体晃动的瞬态响应分析 [J]. 振动与冲击, 2018, 37(17): 1–8. DOI: 10.13465/j.cnki.jvs.2018.17.001.

    WANG Q Y, JIANG K H, RAKHEJA S, et al. Transient response analysis of liquid slosh in a liquid-partially filled tank truck [J]. Journal of Vibration and Shock, 2018, 37(17): 1–8. DOI: 10.13465/j.cnki.jvs.2018.17.001.
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  50
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-15
  • 修回日期:  2023-12-13
  • 网络出版日期:  2024-01-05
  • 刊出日期:  2024-06-18

目录

    /

    返回文章
    返回