爆炸载荷下水下隧道的压力分布和动力响应

杜闯 张江鹏 庄铁栓 伍俊 许文轩 张涛

杜闯, 张江鹏, 庄铁栓, 伍俊, 许文轩, 张涛. 爆炸载荷下水下隧道的压力分布和动力响应[J]. 爆炸与冲击, 2024, 44(5): 053202. doi: 10.11883/bzycj-2023-0255
引用本文: 杜闯, 张江鹏, 庄铁栓, 伍俊, 许文轩, 张涛. 爆炸载荷下水下隧道的压力分布和动力响应[J]. 爆炸与冲击, 2024, 44(5): 053202. doi: 10.11883/bzycj-2023-0255
DU Chuang, ZHANG Jiangpeng, ZHUANG Tieshuan, WU Jun, XU Wenxuan, ZHANG Tao. Pressure distribution and dynamic response of a submerged tunnel under explosion loading[J]. Explosion And Shock Waves, 2024, 44(5): 053202. doi: 10.11883/bzycj-2023-0255
Citation: DU Chuang, ZHANG Jiangpeng, ZHUANG Tieshuan, WU Jun, XU Wenxuan, ZHANG Tao. Pressure distribution and dynamic response of a submerged tunnel under explosion loading[J]. Explosion And Shock Waves, 2024, 44(5): 053202. doi: 10.11883/bzycj-2023-0255

爆炸载荷下水下隧道的压力分布和动力响应

doi: 10.11883/bzycj-2023-0255
基金项目: 河北省高等学校科学研究基金(ZD2022140)
详细信息
    作者简介:

    杜 闯(1976- ),男,博士,讲师,duch_1@sina.com

    通讯作者:

    庄铁栓(1983- ),男,博士,工程师,ztieshuan@163.com

  • 中图分类号: O382

Pressure distribution and dynamic response of a submerged tunnel under explosion loading

  • 摘要: 为了研究隧道结构在水中爆炸冲击下的荷载分布和动力响应,设计并制作了1/10缩尺隧道模型,进行了3次水下爆炸试验,对隧道模型的压力、冲量和位移进行了研究。研究结果表明:冲击波在浅水区会产生明显的水面截断效应,该效应会使近水面的冲量减小;自由场冲击波峰值压力的试验值与理论值吻合良好,误差在20%以内;圆形截面隧道迎爆面峰值压力为自由场峰值压力的1.626~1.716倍,顶面峰值压力为自由场峰值压力的54.3%~65.2%,背爆面峰值压力为自由场峰值压力的25.5%~31.3%;水中爆炸作用下的冲量时程曲线呈明显的阶梯状,每一次的气泡脉动都伴随着相应的冲量增加;水下爆炸会引起隧道结构产生振动,其振动过程可分为结构急速变形、结构大幅振动和结构颤振3个阶段,隧道结构的最大位移发生在结构大幅振动阶段。
  • 图  1  水下隧道缩尺模型试件

    Figure  1.  A scaled-model specimen of submerged tunnels

    图  2  水下爆炸试验装置

    Figure  2.  Setup for underwater explosion tests

    图  3  压力传感器的布置

    Figure  3.  Layout of pressure sensors

    图  4  位移传感器D1~D5的安装

    Figure  4.  Installation of displacement sensors D1-D5

    图  5  不同工况下压力传感器PCB1和PCB2测得的水下爆炸自由场压力时程曲线

    Figure  5.  Free-field pressure-time history curves obtained by pressure sensors PCB1and PCB2 under different test conditions

    图  6  自由场冲击波峰值压力理论值与试验值的对比

    Figure  6.  Comparison of test and theoretical values of peak pressure of shock wave in the free field

    图  7  不同工况下迎爆面反射压力与自由场压力时程曲线对比

    Figure  7.  Comparison of the time histories between the reflected pressure on the blast face and the pressure in the free fieldunder different test conditions

    图  8  不同工况下顶面绕射波压力与自由场压力时程曲线对比

    Figure  8.  Comparison of the time histories between top diffraction wave pressure and free-field pressure under different test conditions

    图  9  不同工况下背爆面绕射压力时程曲线

    Figure  9.  Time histories of diffraction pressure on the back blast surface under different test conditions

    图  10  不同工况下自由场不同位置处冲量时程曲线的对比

    Figure  10.  Comparison of impulse time history curves at different positions in the free field under different test conditions

    图  11  不同工况下试件上不同测点的冲击波压力时程曲线和冲量时程曲线

    Figure  11.  Time history curves of shock wave pressure and impulse at different measuring points on the specimen under different test conditions

    图  12  位移时程曲线(W=0.2 kg,R=3 m)

    Figure  12.  Displacement time history curves (W=0.2 kg,R=3 m)

    表  1  试验工况

    Table  1.   Test conditions

    工况 W/kg R/m (RW −1/3)/(m∙kg−1/3)
    1 0.2 3 5.13
    2 0.4 2 2.71
    3 0.4 1 1.36
    下载: 导出CSV

    表  2  不同工况下迎爆面反射波峰值压力与自由场峰值压力的对比

    Table  2.   Comparison between the peak reflected pressure on the blast face and the peak pressure in the free field under different test conditions

    工况 反射波峰值压力/MPa 自由场峰值压力/MPa 两者的比
    1 14.512 8.925 1.626
    2 33.015 19.234 1.716
    3 73.533 43.833 1.678
    下载: 导出CSV

    表  3  顶面绕射波峰值压力与自由场峰值压力的对比

    Table  3.   Comparison between the peak diffraction wave pressure and the peak free-field pressure at the top surface

    工况 绕射波峰值压力/MPa 自由场峰值压力/MPa 两者的比
    1 5.171 7.933 0.652
    2 7.626 13.774 0.554
    3 11.608 21.378 0.543
    下载: 导出CSV

    表  4  不同工况下测得的背爆面绕射波峰值压力与自由场理论峰值压力的对比

    Table  4.   Comparison between the test peak diffraction wave pressure and the theoretical peak free-field pressure on the back blast surface under different test conditions

    工况 绕射波峰值压力
    测试值/MPa
    自由场峰值压力
    理论值/MPa
    两者的比
    1 1.769 5.647 0.313
    2 2.542 9.968 0.255
    3 4.158 15.223 0.273
    下载: 导出CSV
  • [1] LIANG K, FENG K, ZHANG L, et al. Failure mechanism of underwater shield tunnel: an experimental and theoretical study [J]. Tunnelling and Underground Space Technology, 2023, 137: 105155. DOI: 10.1016/J.TUST.2023.105155.
    [2] JIA M W, LI F, ZHANG Y Z, et al. The Nord Stream pipeline gas leaks released approximately 220, 000 tonnes of methane into the atmosphere [J]. Environmental Science and Ecotechnology, 2022, 12: 100210. DOI: 10.1016/J.ESE.2022.100210.
    [3] STEWART M G, THÖNS S, BECK A T. Assessment of risk reduction strategies for terrorist attacks on structures [J]. Structural Safety, 2023, 104: 102353. DOI: 10.1016/J.STRUSAFE.2023.102353.
    [4] VYSHNEVSKYI V, SHEVCHUK S, KOMORIN V, et al. The destruction of the Kakhovka dam and its consequences [J]. Water International, 2023, 48(5): 631–647. DOI: 10.1080/02508060.2023.2247679.
    [5] XU L F, CHEN L, FANG Q, et al. Blast resistance of a folded arch cross-section immersed tunnel subjected to internal explosion [J]. Tunnelling and Underground Space Technology, 2022, 125: 104521. DOI: 10.1016/J.TUST.2022.104521.
    [6] KRISTOFFERSEN M, MINORETTI A, BØRVIK T. On the internal blast loading of submerged floating tunnels in concrete with circular and rectangular cross-sections [J]. Engineering Failure Analysis, 2019, 103: 462–480. DOI: 10.1016/j.engfailanal.2019.04.074.
    [7] YANG G D, WANG G H, LU W B, et al. Damage assessment and mitigation measures of underwater tunnel subjected to blast loads [J]. Tunnelling and Underground Space Technology, 2019, 94: 103131. DOI: 10.1016/j.tust.2019.103131.
    [8] YANG G D, FAN Y, WANG G H, et al. Numerical study on dynamic response of submerged tunnel subjected to underwater explosion [J]. Soil Dynamics and Earthquake Engineering, 2022, 156: 107216. DOI: 10.1016/j.soildyn.2022.107216.
    [9] DE A, NIEMIEC A, ZIMMIE T F. Physical and numerical modeling to study effects of an underwater explosion on a buried tunnel [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(5): 04017002. DOI: 10.1061/(ASCE)GT.1943-5606.0001638.
    [10] DE A, NIEMIEC A, ZIMMIE T F. Pore pressure development near tunnel due to underwater explosion from centrifuge tests [J]. International Journal of Physical Modelling in Geotechnics, 2021, 21(5): 234–250. DOI: 10.1680/jphmg.19.00037.
    [11] 王雪霁, 刘罡. 悬浮隧道(水下连续梁桥)跨越海峡方案研究 [J]. 路基工程, 2017(6): 152–155. DOI: 10.13379/j.issn.1003-8825.2017.06.31.

    WANG X J, LIU G. Research on the scheme of submerged floating tunnel (underwater continuous girder bridge) crossing the strait [J]. Subgrade Engineering, 2017(6): 152–155. DOI: 10.13379/j.issn.1003-8825.2017.06.31.
    [12] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 沉管法隧道设计标准: GB/T 51318-2019 [S]. 北京: 中国标准出版社, 2019.
    [13] ZHANG Y, ZHOU Y D, WU H. Influence of water level on RC caisson subjected to underwater explosions [J]. Ocean Engineering, 2022, 266: 113162. DOI: 10.1016/J.OCEANENG.2022.113162.
    [14] ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD-757183 [R]. 1972: 86–120.
    [15] COLE R H. Underwater explosion [M]. Princeton: Princeton University Press, 1948.
    [16] 张守中. 爆炸与冲击动力学 [M]. 北京: 兵器工业出版社, 1993.
    [17] 邵宗战. 水下爆炸作用下圆柱壳周围压力场分布 [J]. 兵器装备工程学报, 2017, 38(3): 38–41.

    SHAO Z Z. Pressure field distribution around cylindrical shell subjected to underwater explosion [J]. Journal of Ordnance Equipment Engineering, 2017, 38(3): 38–41. DOI: 10.11809/scbgxb2017.03.009.
    [18] 宋敬利, 张姝红, 周学滨. 水下爆炸作用下船体结构应变信号修正方法 [J]. 爆破, 2011, 28(3): 30–33. DOI: 10.3963/j.issn.1001-487X.2011.03.008.

    SONG J L, ZHANG S H, ZHOU X B. Revision method of ship structure strain signal induced by underwater explosion [J]. Blasting, 2011, 28(3): 30–33. DOI: 10.3963/j.issn.1001-487X.2011.03.008.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  57
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2024-03-22
  • 网络出版日期:  2024-03-22
  • 刊出日期:  2024-05-08

目录

    /

    返回文章
    返回