Pressure distribution and dynamic response of a submerged tunnel under explosion loading
-
摘要: 为了研究隧道结构在水中爆炸冲击下的荷载分布和动力响应,设计并制作了1/10缩尺隧道模型,进行了3次水下爆炸试验,对隧道模型的压力、冲量和位移进行了研究。研究结果表明:冲击波在浅水区会产生明显的水面截断效应,该效应会使近水面的冲量减小;自由场冲击波峰值压力的试验值与理论值吻合良好,误差在20%以内;圆形截面隧道迎爆面峰值压力为自由场峰值压力的1.626~1.716倍,顶面峰值压力为自由场峰值压力的54.3%~65.2%,背爆面峰值压力为自由场峰值压力的25.5%~31.3%;水中爆炸作用下的冲量时程曲线呈明显的阶梯状,每一次的气泡脉动都伴随着相应的冲量增加;水下爆炸会引起隧道结构产生振动,其振动过程可分为结构急速变形、结构大幅振动和结构颤振3个阶段,隧道结构的最大位移发生在结构大幅振动阶段。Abstract: In order to study the load distribution and dynamic response of tunnel structures under underwater explosion, a 1/10 scaled tunnel model was designed and manufactured, and underwater explosion tests were conducted for three times.The pressure, impulse, and displacement of the tunnel model were studied. The results show that the shock wave produces a significant water surface truncation effect in the shallow water area, which reduces the impulse near the water surface. The experimental value of the peak pressure of the free field shock wave is in good agreement with the theoretical value, and the error is within 20%. The peak pressure on the front surface of the circular cross-section tunnel is about 1.626-1.716 times that of the free field, the peak pressure on the top surface is about 55.4%-65.2% of the free field, and the peak pressure on the back surface is about 25.5%-31.3% of the free field. The impulse time history curve under the action of underwater explosion shows a clear step shape, and each bubble pulsation is accompanied by a corresponding increase in impulse.The displacement analysis shows that the underwater explosion causes the vibration of the tunnel structure. The vibration process can be divided into three stages: the rapid deformation of the tunnel structure, the large amplitude vibration of the tunnel structure, and the tremor of the tunnel structure. The maximum displacement of the tunnel structure occurs during the large amplitude vibration of the tunnel structure.
-
Key words:
- submerged tunnel /
- underwater explosion /
- peak pressure /
- dynamic response /
- scaled model test
-
表 1 试验工况
Table 1. Test conditions
工况 W/kg R/m (R∙W −1/3)/(m∙kg−1/3) 1 0.2 3 5.13 2 0.4 2 2.71 3 0.4 1 1.36 表 2 不同工况下迎爆面反射波峰值压力与自由场峰值压力的对比
Table 2. Comparison between the peak reflected pressure on the blast face and the peak pressure in the free field under different test conditions
工况 反射波峰值压力/MPa 自由场峰值压力/MPa 两者的比 1 14.512 8.925 1.626 2 33.015 19.234 1.716 3 73.533 43.833 1.678 表 3 顶面绕射波峰值压力与自由场峰值压力的对比
Table 3. Comparison between the peak diffraction wave pressure and the peak free-field pressure at the top surface
工况 绕射波峰值压力/MPa 自由场峰值压力/MPa 两者的比 1 5.171 7.933 0.652 2 7.626 13.774 0.554 3 11.608 21.378 0.543 表 4 不同工况下测得的背爆面绕射波峰值压力与自由场理论峰值压力的对比
Table 4. Comparison between the test peak diffraction wave pressure and the theoretical peak free-field pressure on the back blast surface under different test conditions
工况 绕射波峰值压力
测试值/MPa自由场峰值压力
理论值/MPa两者的比 1 1.769 5.647 0.313 2 2.542 9.968 0.255 3 4.158 15.223 0.273 -
[1] LIANG K, FENG K, ZHANG L, et al. Failure mechanism of underwater shield tunnel: an experimental and theoretical study [J]. Tunnelling and Underground Space Technology, 2023, 137: 105155. DOI: 10.1016/J.TUST.2023.105155. [2] JIA M W, LI F, ZHANG Y Z, et al. The Nord Stream pipeline gas leaks released approximately 220, 000 tonnes of methane into the atmosphere [J]. Environmental Science and Ecotechnology, 2022, 12: 100210. DOI: 10.1016/J.ESE.2022.100210. [3] STEWART M G, THÖNS S, BECK A T. Assessment of risk reduction strategies for terrorist attacks on structures [J]. Structural Safety, 2023, 104: 102353. DOI: 10.1016/J.STRUSAFE.2023.102353. [4] VYSHNEVSKYI V, SHEVCHUK S, KOMORIN V, et al. The destruction of the Kakhovka dam and its consequences [J]. Water International, 2023, 48(5): 631–647. DOI: 10.1080/02508060.2023.2247679. [5] XU L F, CHEN L, FANG Q, et al. Blast resistance of a folded arch cross-section immersed tunnel subjected to internal explosion [J]. Tunnelling and Underground Space Technology, 2022, 125: 104521. DOI: 10.1016/J.TUST.2022.104521. [6] KRISTOFFERSEN M, MINORETTI A, BØRVIK T. On the internal blast loading of submerged floating tunnels in concrete with circular and rectangular cross-sections [J]. Engineering Failure Analysis, 2019, 103: 462–480. DOI: 10.1016/j.engfailanal.2019.04.074. [7] YANG G D, WANG G H, LU W B, et al. Damage assessment and mitigation measures of underwater tunnel subjected to blast loads [J]. Tunnelling and Underground Space Technology, 2019, 94: 103131. DOI: 10.1016/j.tust.2019.103131. [8] YANG G D, FAN Y, WANG G H, et al. Numerical study on dynamic response of submerged tunnel subjected to underwater explosion [J]. Soil Dynamics and Earthquake Engineering, 2022, 156: 107216. DOI: 10.1016/j.soildyn.2022.107216. [9] DE A, NIEMIEC A, ZIMMIE T F. Physical and numerical modeling to study effects of an underwater explosion on a buried tunnel [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(5): 04017002. DOI: 10.1061/(ASCE)GT.1943-5606.0001638. [10] DE A, NIEMIEC A, ZIMMIE T F. Pore pressure development near tunnel due to underwater explosion from centrifuge tests [J]. International Journal of Physical Modelling in Geotechnics, 2021, 21(5): 234–250. DOI: 10.1680/jphmg.19.00037. [11] 王雪霁, 刘罡. 悬浮隧道(水下连续梁桥)跨越海峡方案研究 [J]. 路基工程, 2017(6): 152–155. DOI: 10.13379/j.issn.1003-8825.2017.06.31.WANG X J, LIU G. Research on the scheme of submerged floating tunnel (underwater continuous girder bridge) crossing the strait [J]. Subgrade Engineering, 2017(6): 152–155. DOI: 10.13379/j.issn.1003-8825.2017.06.31. [12] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 沉管法隧道设计标准: GB/T 51318-2019 [S]. 北京: 中国标准出版社, 2019. [13] ZHANG Y, ZHOU Y D, WU H. Influence of water level on RC caisson subjected to underwater explosions [J]. Ocean Engineering, 2022, 266: 113162. DOI: 10.1016/J.OCEANENG.2022.113162. [14] ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD-757183 [R]. 1972: 86–120. [15] COLE R H. Underwater explosion [M]. Princeton: Princeton University Press, 1948. [16] 张守中. 爆炸与冲击动力学 [M]. 北京: 兵器工业出版社, 1993. [17] 邵宗战. 水下爆炸作用下圆柱壳周围压力场分布 [J]. 兵器装备工程学报, 2017, 38(3): 38–41.SHAO Z Z. Pressure field distribution around cylindrical shell subjected to underwater explosion [J]. Journal of Ordnance Equipment Engineering, 2017, 38(3): 38–41. DOI: 10.11809/scbgxb2017.03.009. [18] 宋敬利, 张姝红, 周学滨. 水下爆炸作用下船体结构应变信号修正方法 [J]. 爆破, 2011, 28(3): 30–33. DOI: 10.3963/j.issn.1001-487X.2011.03.008.SONG J L, ZHANG S H, ZHOU X B. Revision method of ship structure strain signal induced by underwater explosion [J]. Blasting, 2011, 28(3): 30–33. DOI: 10.3963/j.issn.1001-487X.2011.03.008.