高应变率下不同初始相变温度NiTi合金的力学响应

张旭平 董金磊 吕超 罗斌强 王桂吉 谭福利 赵剑衡

张旭平, 董金磊, 吕超, 罗斌强, 王桂吉, 谭福利, 赵剑衡. 高应变率下不同初始相变温度NiTi合金的力学响应[J]. 爆炸与冲击, 2024, 44(5): 053102. doi: 10.11883/bzycj-2023-0257
引用本文: 张旭平, 董金磊, 吕超, 罗斌强, 王桂吉, 谭福利, 赵剑衡. 高应变率下不同初始相变温度NiTi合金的力学响应[J]. 爆炸与冲击, 2024, 44(5): 053102. doi: 10.11883/bzycj-2023-0257
ZHANG Xuping, DONG Jinlei, LYU Chao, LUO Binqiang, WANG Guiji, TAN Fuli, ZHAO Jianheng. Mechanical response of NiTi alloys with different initial phase transition temperatures at high strain rates[J]. Explosion And Shock Waves, 2024, 44(5): 053102. doi: 10.11883/bzycj-2023-0257
Citation: ZHANG Xuping, DONG Jinlei, LYU Chao, LUO Binqiang, WANG Guiji, TAN Fuli, ZHAO Jianheng. Mechanical response of NiTi alloys with different initial phase transition temperatures at high strain rates[J]. Explosion And Shock Waves, 2024, 44(5): 053102. doi: 10.11883/bzycj-2023-0257

高应变率下不同初始相变温度NiTi合金的力学响应

doi: 10.11883/bzycj-2023-0257
基金项目: 国家自然科学基金(12002327,12272364,11972031)
详细信息
    作者简介:

    张旭平(1988- ),男,博士,副研究员,xupingzhang@sina.cn

    通讯作者:

    赵剑衡(1969- ),男,博士,研究员,jianh_zhao@sina.com

  • 中图分类号: O346.4

Mechanical response of NiTi alloys with different initial phase transition temperatures at high strain rates

  • 摘要: 为获得高应变率下不同初始相变温度NiTi合金的屈服应力等基本物理特性和力学响应规律,采用10−3 s−1应变率下准静态压缩与拉伸、105 s−1应变率下准等熵压缩及107 s−1应变率下冲击加载实现跨量级的不同应变率加载,高应变率加载实验中通过控制样品初始温度实现不同初始相态NiTi合金的力学响应测量。结果显示,初始马氏体相和初始奥氏体相NiTi合金的准静态加载应力-应变曲线中均出现2次模量变化,初始马氏体相中的模量变化由晶体重定向和马氏体相塑性变形引起,初始奥氏体相中的模量变化由马氏体相变和相变后塑性变形引起。准等熵加载下,初始马氏体相NiTi合金的Lagrangian声速随粒子速度增大而增大,未观察到间断等非线性变化;而初始奥氏体相中声速曲线存在间断,声速由初始横波值间断减小至体波声速后再随粒子速度线性增大。冲击实验中,初始马氏体相NiTi合金后自由面速度约34 m/s处出现双波结构,而将样品初始温度升至402 K后再冲击加载,则在约100 m/s处出现双波结构,二者速度曲线拐点分别由马氏体相弹塑性屈服和奥氏体相塑性屈服引起;在初始奥氏体相NiTi合金冲击实验中,在样品后自由面速度达到220~260 m/s时才出现显著的奥氏体相弹塑性转变。随着应变率从约105 s−1升高至107 s−1,相同组分奥氏体相NiTi合金的弹性极限由约2 GPa增大至约4 GPa,107 s−1应变率下,随着初始样品温度升至402 K,弹性极限降至1.7 GPa,表明NiTi合金的弹性极限存在显著的温度和应变率效应。
  • 图  1  NiTi-1、NiTi-2、NiTi-3和NiTi-4在10−3 s−1应变率下室温压缩和拉伸的应力-应变曲线

    Figure  1.  Stress-strain curves of NiTi-1, NiTi-2, NiTi-3, and NiTi-4 at room temperature and under compression and tension at the strain rate of 10−3 s−1

    图  2  实验原理和布局

    Figure  2.  Experimental principle and layout

    图  3  实验负载区照片

    Figure  3.  Photo of experimental load region

    图  4  准等熵压缩实验速度剖面

    Figure  4.  Velocity profiles of isentropic compression experiments

    图  5  准等熵压缩实验结果

    Figure  5.  Results of isentropic compression experiments

    图  6  准等熵加载下的应力-应变曲线

    Figure  6.  Stress-strain curves under quasi-isentropic loading

    图  7  不同条件冲击实验中样品速度剖面

    Figure  7.  Velocity profiles of shock compression experiments under different conditions

    图  8  高应变率下NiTi合金的弹性极限

    Figure  8.  Elastic limit of NiTi alloys at high strain rates

    表  1  常压下NiTi合金的物性参数

    Table  1.   Physical parameters of NiTi alloys at normal conditions

    编号 密度/(g·cm–3) 组分 TMs/K TMf/K TAs/K TAf/K cL0/(km·s–1) cs/(km·s–1)
    NiTi-1 6.40 Ni55Ti45 342.0 295.0 349.0 391.0 5.376 1.731
    NiTi-2 6.40 Ni56Ti44 244.0 227.0 259.0 281.0
    NiTi-3 6.40 Ni56Ti44 227.0 196.0 243.0 262.0
    NiTi-4 6.42 Ni52Ti46-48 258.4 253.3 261.6 272.3 5.434 1.775
    下载: 导出CSV

    表  2  准静态加载下应力-应变曲线拐点应力

    Table  2.   Stress value of inflection point on stress-strain curve under quasi-static loading

    编号 拉伸应力/MPa 压缩应力/MPa
    σPHσA-M σP σPHσA-M σP
    NiTi-1 230 657 266 1 528
    NiTi-2 415 445 1 377
    NiTi-3 400 534 1 198
    NiTi-4 405 615 1 280
    下载: 导出CSV

    表  3  高应变率实验条件

    Table  3.   Conditions of high strain rate experiments

    实验编号 实验加载方式 样品编号 样品材料 样品尺寸/mm 样品初始温度/K
    Shot-518准等熵压缩S1NiTi-4$\varnothing $12×2.010300
    S2NiTi-4$\varnothing $12×2.305300
    Shot-522准等熵压缩S1NiTi-4$\varnothing $12×2.012300
    S2NiTi-4$\varnothing $12×2.295300
    Shot-1036准等熵压缩S1NiTi-1$\varnothing $8×1.500300
    S2NiTi-1$\varnothing $8×1.802300
    Shot-1037准等熵压缩S1NiTi-1$\varnothing $8×1.498346
    S2NiTi-1$\varnothing $8×1.800346
    Shot-1040准等熵压缩S1NiTi-1$\varnothing $8×1.504383
    S2NiTi-1$\varnothing $8×1.804383
    Shot-653冲击加载NiTi-4$\varnothing $8×1.010300
    Shot-654冲击加载NiTi-4$\varnothing $8×1.004300
    Shot-1035冲击加载NiTi-18×8×0.809302
    Shot-1038冲击加载NiTi-18×8×0.800402
    Shot-1039冲击加载NiTi-18×8×0.800302
    下载: 导出CSV
  • [1] LAGOUDAS D C. Shape memory alloys: modeling and engineering applications [M]. New York: Springer Science and Business Media, 2008: 1–51. DOI: 10.1007/978-0-387-47685-8.
    [2] CHAU E T F, FRIEND C M, ALLEN D M, et al. A technical and economic appraisal of shape memory alloys for aerospace applications [J]. Materials Science and Engineering: A, 2006, 438/440: 589–592. DOI: 10.1016/j.msea.2006.02.201.
    [3] RAO A, SRINIVASA A R, REDDY J N. Design of shape memory alloy actuators [M]. New York: Springer Science and Business Media, 2015: 1–43. DOI: 10.1007/978-3-319-03188-0.
    [4] LECCE L, CONCILIO A. Shape memory alloy engineering: for aerospace, structural and biomedical applications [M]. Oxford: Butterworth-Heinemann, 2015: 1–40.
    [5] QIU Y, YOUNG M L, NIE X. High strain rate compression of martensitic NiTi shape memory alloys [J]. Shape Memory and Superelasticity, 2015, 1(35): 310–318. DOI: 10.1007/s40830-015-0035-y.
    [6] NASSER S N, CHOI J Y, GUO W G, et al. Very high strain-rate response of a NiTi shape-memory alloy [J]. Mechanics of Materials, 2005, 37: 287–298. DOI: 10.1016/j.mechmat.2004.03.007.
    [7] MILLETT J C F, BOURNE N K, GRAY G T. Behavior of the shape memory alloy NiTi during one-dimensional shock loading [J]. Journal of Applied Physics, 2002, 92(6): 3107–3110. DOI: 10.1063/1.1498877.
    [8] MILLETT J C F, BOURNE N K. The shock-induced mechanical response of the shape memory alloy NiTi [J]. Materials Science and Engineering: A, 2004, 378(S1): 138–142. DOI: 10.1016/j.msea.2003.10.334.
    [9] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017: 97–137.

    WANG L L, HU S S, YANG L M, et al. Material dynamics [M]. Hefei: University of Science and Technology of China Press, 2017: 97–137.
    [10] HUANG H, DURAND B, SUN Q P, et al. An experimental study of NiTi alloy under shear loading over a large range of strain rates [J]. International Journal of Impact Engineering, 2017, 108: 402–413. DOI: 10.1016/j.ijimpeng.2017.03.007.
    [11] LIU Y, LI Y L, RAMESH K T, et al. High strain rate deformation of martensitic NiTi shape memory alloy [J]. Scripta Materialia, 1999, 41: 89–95. DOI: 10.1016/S1359-6462(99)00058-5.
    [12] CHEN W W, WU Q P, KANG J H, et al. Compressive superelastic behavior of a NiTi shape memory alloy at strain rate of 0.001–750 s–1 [J]. International Journal of Solids and Structures, 2001, 38(50/51): 8989–8998. DOI: 10.1016/S0020-7683(01)00165-2.
    [13] BELYAEV S P, PETROV A, RAZOV A, et al. Mechanical properties of titanium nickelide at high strain rate loading [J]. Materials Science and Engineering: A, 2004, 378(1/2): 122–124. DOI: 10.1016/j.msea.2003.11.059.
    [14] NASSER S N, CHOI J Y, GUO W G, et al. High strain-rate, small strain response of a NiTi shape-memory alloy [J]. Journal of Engineering Materials and Technology, 2005, 127(1): 83–89. DOI: 10.1115/1.1839215.
    [15] ORGÉAS L, FAVIER D. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression [J]. Acta Materialia, 1998, 46(15): 5579–5591. DOI: 10.1016/S1359-6454(98)00167-0.
    [16] THAKUR A M, THADHANI N N, SCHWARZ R B. Shock-induced martensitic transformations in near-equiatomic NiTi alloys [J]. Metallurgical and Materials Transactions A, 1997, 28: 1445–1455. DOI: 10.1007/s11661-997-0207-2.
    [17] LV C, WANG G J, ZHANG X P, et al. Spalling modes and mechanisms of shocked nanocrystalline NiTi at different loadings and temperatures [J]. Mechanics of Materials, 2021, 161: 104004. DOI: 10.1016/j.mechmat.2021.104004.
    [18] LIAO Y L, YE C, LIN D, et al. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening [J]. Journal of Applied Physics, 2012, 112: 033515. DOI: 10.1063/1.4742997.
    [19] QI Z P, WANG F, WANG J, et al. Role of temperature and strain rate on the stress reversal in dynamic damage of monocrystalline NiTi alloy [J]. Mechanics of Materials, 2022, 165: 104185. DOI: 10.1016/j.mechmat.2021.104185.
    [20] 施绍裘, 陈江瑛, 董新龙, 等. 钛镍形状记忆合金冲击变形后形状记忆效应的研究 [J]. 爆炸与冲击, 2001, 21(3): 168–171.

    SHI S Q, CHEN J Y, DONG X L, et al. Study on shape memory effect of TiNi alloy after impact deformation [J]. Explosion and Shock Waves, 2001, 21(3): 168–171.
    [21] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. DOI: 10.1063/1.4788935.
    [22] ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85(5): 055110. DOI: 10.1063/1.4875705.
    [23] ZHANG X P, WANG G J, LUO B Q, et al. Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate [J]. Journal of Alloys and Compounds, 2018, 731: 569–576. DOI: 10.1016/j.jallcom.2017.10.080.
    [24] 陶天炯, 翁继东, 王翔. 一种双源光外差测速技术 [J]. 光电工程, 2011, 38(10): 39–45. DOI: 10.3969/j.issn.1003-501X.2011.10.007.

    TAO T J, WENG J D, WANG X. A dual laser heterodyne velocimetry [J]. Opt-Electronic Engineering, 2011, 38(10): 39–45. DOI: 10.3969/j.issn.1003-501X.2011.10.007.
    [25] 李建中, 王德田, 刘俊, 等. 多点光子多普勒测速仪及其在爆轰物理领域的应用 [J]. 红外与激光工程, 2016, 45(4): 0422001. DOI: 10.3788/IRLA201645.0422001.

    LI J Z, WANG D T, LIU J, et al. Multi-channel photonic Doppler velocimetry and its application in the field of explosion physics [J]. Infrared and Laser Engineering, 2016, 45(4): 0422001. DOI: 10.3788/IRLA201645.0422001.
    [26] RAZORENOV S V, GARKUSHIN G V, KANEL G I, et al. Behavior of the nickel-titanium alloys with the shape memory effect under conditions of shock wave loading [J]. Physics of Solid State, 2011, 53: 824–829. DOI: 10.1134/S1063783411040305.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  67
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-12-18
  • 网络出版日期:  2023-12-29
  • 刊出日期:  2024-05-08

目录

    /

    返回文章
    返回