Mechanical response of NiTi alloys with different initial phase transition temperatures at high strain rates
-
摘要: 为获得高应变率下不同初始相变温度NiTi合金的屈服应力等基本物理特性和力学响应规律,采用10−3 s−1应变率下准静态压缩与拉伸、105 s−1应变率下准等熵压缩及107 s−1应变率下冲击加载实现跨量级的不同应变率加载,高应变率加载实验中通过控制样品初始温度实现不同初始相态NiTi合金的力学响应测量。结果显示,初始马氏体相和初始奥氏体相NiTi合金的准静态加载应力-应变曲线中均出现2次模量变化,初始马氏体相中的模量变化由晶体重定向和马氏体相塑性变形引起,初始奥氏体相中的模量变化由马氏体相变和相变后塑性变形引起。准等熵加载下,初始马氏体相NiTi合金的Lagrangian声速随粒子速度增大而增大,未观察到间断等非线性变化;而初始奥氏体相中声速曲线存在间断,声速由初始横波值间断减小至体波声速后再随粒子速度线性增大。冲击实验中,初始马氏体相NiTi合金后自由面速度约34 m/s处出现双波结构,而将样品初始温度升至402 K后再冲击加载,则在约100 m/s处出现双波结构,二者速度曲线拐点分别由马氏体相弹塑性屈服和奥氏体相塑性屈服引起;在初始奥氏体相NiTi合金冲击实验中,在样品后自由面速度达到220~260 m/s时才出现显著的奥氏体相弹塑性转变。随着应变率从约105 s−1升高至107 s−1,相同组分奥氏体相NiTi合金的弹性极限由约2 GPa增大至约4 GPa,107 s−1应变率下,随着初始样品温度升至402 K,弹性极限降至1.7 GPa,表明NiTi合金的弹性极限存在显著的温度和应变率效应。Abstract: In order to obtain the physical and mechanical properties of NiTi alloys with different initial phase transition temperatures under high strain rates, the responses of NiTi alloys with different initial phase transition temperatures were systematically studied under quasi-static compression and tension at strain rate 10−3 s−1, quasi-isentropic compression at strain rate 105 s−1, and shock compression at strain rate 107 s−1. Dog-bone specimens and cylindrical rod specimens were used in the quasi-static tension and compression experiments, respectively. A series of quasi-isentropic compression and planar shock wave compression experiments were performed by using the pulsed power generator CQ-4, which can deliver pulsed currents with peak values of 3–4 MA and a rise time of 470–600 ns to short circuit loads. Velocities were measured by a photonic Doppler velocimetry (PDV) system with accuracies of 1%. The quasi-static loading stress-strain curves showed twice modulus changes for both the initial martensitic and initial austenitic NiTi alloys. The modulus changes were caused by crystal reorientation and plastic deformation of the martensitic NiTi alloy. In experiments of the initial austenitic phase, the modulus changes were caused by martensitic phase transition and plastic deformation after phase change. The Lagrangian sound speed increased continuously with the particle velocity for the initial martensitic NiTi alloy under quasi-isentropic loading. However, there are discontinuities in the sound speed curves for the initial austenite phase. The sound speed decreases intermittently from the transverse wave speed to the longitudinal wave speed and then increases linearly with the particle velocity. In shock experiments of initial martensitic NiTi alloy, a double-wave structure appeared at the free surface velocity of about 34 and 100 m/s for the initial sample temperature of 302 and 402 K, respectively. The martensite-austenite phase transition occurred during sample heating of the initial martensitic NiTi alloy. The inflection points on the velocity curve were caused by plastic yielding of martensitic and austenitic phases separately. For the initial austenite NiTi alloy, an obvious elastic-plastic transformation of austenite NiTi alloy was observed at a free surface velocity of approximately 260 m/s. The elastic limit of austenitic NiTi alloy increased from about 2 GPa to about 4 GPa with the increase of strain rate from about 105 s−1 to 107 s−1. The elastic limit decreased to 1.7 GPa at a strain rate of 107 s−1 with the initial sample temperature of 402 K. The results show that the elastic limit of NiTi alloy is greatly affected by temperature and strain rate.
-
NiTi 合金具有形状记忆效应、超弹性效应、高阻尼(吸能、减震)能力和生物相容性等优异性能,在工业领域具有广泛应用[1]。近年来,随着NiTi合金应用范围的不断拓展,其在部分应用环境中可能遭受瞬态(微秒、纳秒量级)动态载荷加载,如NiTi合金用于飞机的吸能器件、航天器机构收缩重复动作部件时,可能遭受平均速度为数千米每秒高速空间碎片的撞击[2-3];用于盔甲等防护系统[4-6]时,可能受到子弹等的撞击。虽然针对准静态加载下NiTi合金的力学性能已有较多研究,但是由于惯性效应和应变率效应,材料在高应变率下的力学特性、变形机理与准静态下存在显著差异[7-9]。因此,开展高应变率下NiTi合金的力学特性和动态响应规律研究具有迫切需求和重要价值。
NiTi合金的形状记忆效应、伪弹性特性由其在一定应力、温度条件下发生奥氏体(austenite,B2)相与马氏体(martensite,B19ˊ)相之间的转变引起。NiTi合金奥氏体-马氏体相变对应力状态、温度非常敏感[10]。在中、低应变率加载下,随着加载应变率升高,由于变形等耗散生热使马氏体相变阻力增大,导致应力诱导马氏体相变压力随应变率的升高而增大[11-12]。当初始温度达到临界相转变温度时,变形物理机制发生转变,NiTi 合金在应力加载后不再发生应力诱导奥氏体-马氏体相变,而是发生母相奥氏体相的弹塑性变形[13-14]。准静态实验研究表明,马氏体相NiTi合金与奥氏体相NiTi合金的屈服强度差异较大[15],而高应变率加载接近于绝热过程,由于绝热温升以及材料变形的非瞬态响应,必将影响材料的相变驱动力、相变条件及塑性屈服条件等基本物性[9, 16-17]。鉴于NiTi合金相态及其相应力学性质对温度具有较强的敏感性,解耦获得不同初始相态在高应变率下的屈服强度等对应用设计至关重要[18-19]。为此,本文中,通过控制样品温度实现材料初始相态改变,获得高应变率下不同初始相变温度NiTi合金屈服应力等基本物理特性和力学响应规律,以期为完善NiTi合金物理模型和NiTi合金关键部件在极端环境下的安全设计提供参考。
1. 实验方法与技术
1.1 样品静态性能表征
实验选择了4种不同初始相变温度的近等原子比NiTi合金。首先表征获得了材料在常压下的基本物性参数,其中相变温度采用差热分析测量,组分采用化学分析和气体分析,声速测量采用5 MHz石英传感器的超声波测量仪,相变温度、组分等参数见表1。表中:TMs为马氏体相变起始温度,TMf为马氏体相变结束温度,TAs为奥氏体相变起始温度,TAf为奥氏体相变结束温度,cL0为常压下的纵波声速,cs为常压下的横波声速。所选材料相变温度均处于室温附近,根据相变温度,NiTi-1在室温(293 K)下完全处于马氏体,NiTi-2、NiTi-3和NiTi-4在室温下完全处于奥氏体。
表 1 常压下NiTi合金的物性参数Table 1. Physical parameters of NiTi alloys at normal conditions编号 密度/(g·cm–3) 组分 TMs/K TMf/K TAs/K TAf/K cL0/(km·s–1) cs/(km·s–1) NiTi-1 6.40 Ni55Ti45 342.0 295.0 349.0 391.0 5.376 1.731 NiTi-2 6.40 Ni56Ti44 244.0 227.0 259.0 281.0 NiTi-3 6.40 Ni56Ti44 227.0 196.0 243.0 262.0 NiTi-4 6.42 Ni52Ti46-48 258.4 253.3 261.6 272.3 5.434 1.775 采用材料试验机分别开展了准静态压缩和拉伸实验,测量了NiTi-1、NiTi-2、NiTi-3和NiTi-4在10−3 s−1应变率下室温压缩和拉伸的应力-应变曲线,实验结果如图1所示。拉伸实验采用“狗骨”试样,测试段圆柱直径为5 mm、长30 mm;压缩实验采用直径为10 mm、高10 mm的圆柱样品。应力-应变曲线中获得的典型参数如表2所示。NiTi-1样品在压缩和拉伸过程中的应力-应变曲线均出现2个拐点,意味着在此过程中材料模量发生了显著变化。结合材料初始相态和相近实验条件下的结果[20],NiTi-1样品中模量变化分别由初始马氏体相中晶体重定向和马氏体相塑性变形引起。NiTi合金马氏体结构由具有不同晶向的畴域组成,而在每个畴域内还存在孪晶亚结构,通常第1个拐点(σPH处,表示马氏体相畴域结构内晶体重定向相变应力)是由于畴域及孪晶边界的移动引起畴域结构内晶体重定向造成的。由于位错的运动与增殖,就发生不可逆的非弹性塑性变形(σP处,表示非弹性塑性变形应力)。尽管NiTi-2、NiTi-3和NiTi-4合金在常压下的初始相变温度不同,但在室温下均处于奥氏体相,从图1的压缩和拉伸应力-应变曲线中也可以看出,其具有相同的响应规律,即先经过奥氏体相弹性阶段,当应力达到奥氏体-马氏体相变应力(σA-M处,表示奥氏体-马氏体相变应力)后,在应力诱发下材料开始进入奥氏体向马氏体相变阶段,到达σP处时达到马氏体相弹性极限,然后开始发生位错屈服,材料进入塑性阶段。
表 2 准静态加载下应力-应变曲线拐点应力Table 2. Stress value of inflection point on stress-strain curve under quasi-static loading编号 拉伸应力/MPa 压缩应力/MPa σPH或σA-M σP σPH或σA-M σP NiTi-1 230 657 266 1 528 NiTi-2 415 445 1 377 NiTi-3 400 534 1 198 NiTi-4 405 615 1 280 1.2 高应变率加载实验方法及条件
高应变率加载实验在小型脉冲功率装置CQ-4上完成。该装置在充电75~85 kV的短路放电情况下,电流峰值可以达到3~4 MA,电流上升前沿在470~600 ns,可用于应变率104~107 s−1、压力百吉帕范围内的材料动力学行为研究[21-22]。高应变率实验采用磁驱动准等熵加载和磁驱动飞片冲击加载2种技术方法覆盖不同应变率范围。
磁驱动冲击加载和准等熵加载实验原理分别如图2(a)和(b)所示。装置短路放电产生的强电流从2个平行的正负电极板的内表面流过(趋肤效应),极板上流过的电流与另一极板上电流产生的磁场相互作用,在极板内表面产生大小与电流密度的平方成正比的磁压力。随着放电电流的逐渐增大,在电极板内表面形成一个压力平滑上升的压缩波向样品方向传播。磁驱动加载电极板上磁压力的均匀性主要由电流和磁场在极板加载面的均匀性决定。采用优化设计后的电极负载构型[22-23],能实现在样品区极板加载面磁压力的不均匀性小于1%,所以磁驱动加载在一发实验中可实现多个样品同时测量,且各样品对应电极板加载面位置的加载磁压力基本相同。典型实验负载区照片如图3所示,实验中利用陶瓷加热片实现样品初始升温,升控温装置采用比例积分微分温度控制系统,功率为50 W,可实现控温精度在0.5 K以内。采用热电偶测量样品温度,选用的铠装pt100热电偶的测温精度为0.1 K。采用激光干涉速度仪测量加载后样品响应的速度波剖面。基于双光源外差测速技术将干涉频率向上变换使干涉条纹细分,以提高短时低速测量的时间分辨率和速度测量精度,测速精度优于1%[24-25]。实验条件如表3所示,表中S1表示样品1,S2表示样品2。根据初始样品表征结果,NiTi-1和NiTi-4是其中典型的2种初始不同相态材料,因此,选择这2种材料开展高应变率下的冲击和准等熵加载实验。
表 3 高应变率实验条件Table 3. Conditions of high strain rate experiments实验编号 实验加载方式 样品编号 样品材料 样品尺寸/mm 样品初始温度/K Shot-518 准等熵压缩 S1 NiTi-4 ∅12×2.010 300 S2 NiTi-4 ∅12×2.305 300 Shot-522 准等熵压缩 S1 NiTi-4 ∅12×2.012 300 S2 NiTi-4 ∅12×2.295 300 Shot-1036 准等熵压缩 S1 NiTi-1 ∅8×1.500 300 S2 NiTi-1 ∅8×1.802 300 Shot-1037 准等熵压缩 S1 NiTi-1 ∅8×1.498 346 S2 NiTi-1 ∅8×1.800 346 Shot-1040 准等熵压缩 S1 NiTi-1 ∅8×1.504 383 S2 NiTi-1 ∅8×1.804 383 Shot-653 冲击加载 NiTi-4 ∅8×1.010 300 Shot-654 冲击加载 NiTi-4 ∅8×1.004 300 Shot-1035 冲击加载 NiTi-1 8×8×0.809 302 Shot-1038 冲击加载 NiTi-1 8×8×0.800 402 Shot-1039 冲击加载 NiTi-1 8×8×0.800 302 2. 实验结果与分析
准等熵压缩实验获得的速度时程曲线如图4所示,由图4(a)和(b)中的速度时程曲线可以看出,材料NiTi-1和NiTi-4在低速段约150 m/s处存在显著差异。NiTi-4实验中在自由面速度(vfs)约为150 m/s处存在显著的双波结构,NiTi-1实验在自由面速度为150 m/s附近未观察到明显的双波结构。由于显著速度变化是由材料压缩过程中材料模量变化出现显著体积变化引起,因此,推测在加载过程中NiTi-1和NiTi-4的物理响应过程存在本质差异。
采用Lagrange 数据处理方法对准等熵压缩实验进行数据处理,获得的准等熵压缩Lagrangian声速如图5(a)所示,声速在粒子速度75 m/s处存在显著差异,该拐点与速度剖面上自由面速度拐点是对应的。由Lagrangian声速结果得到的弹性波声速(5.4 km/s)与常温常压下声速测量结果基本一致,由此也可确定加载初期为材料弹性变形阶段。另外,过拐点后声速随粒子速度线性增大,Shot-518和Shot-522实验的声速结果规律与初始奥氏体相声速测量结果响应规律一致[23]。由此确定NiTi-4样品在实验Shot-518和Shot-522中的双波结构对应发生初始奥氏体相的弹塑性转变。实验Shot-1036和Shot-1037中初始样品为马氏体相NiTi合金,实验中声速值由初始横波声速逐渐降低至体波声速后再线性增大。由于马氏体相强度低及实验中受低速段测速精度限制,未观察到明显的马氏体相材料弹塑性转变点。准等熵压缩应力、应变及应变率分别为:
σ=ρ0∫u0cLdu (1) ε=∫u01cL(u)du (2) ˙ε=˙ucL(u) (3) 式中:
σ 为应力,ε 为应变,u 为粒子速度,cL为 Lagrangian声速。由声速结果计算获得的准等熵压缩实验的应变率结果见图5(b),实验中准等熵加载的应变率在105 s−1量级。计算获得的准等熵加载实验应力应变曲线见图6,实验Shot-518和Shot-522中样品准等熵压缩下弹性极限分别为2.2和2.0 GPa。从应力-应变曲线的压缩性比较,初始奥氏体相的NiTi-4比初始马氏体相的NiTi-1更硬。冲击加载实验的样品后自由面速度历史如图7所示,室温下,初始奥氏体相NiTi-4样品在冲击加载下表现出显著的弹塑性转变双波结构(见图7(a)),实验Shot-653和Shot-654中弹塑性转变粒子速度分别为130和110 m/s,冲击Hugoniot弹性极限分别为4.5和3.8 GPa。虽然冲击实验中压缩波上升时间很难准确测量,但鉴于实验中冲击波加载弹性段速度上升沿约为数纳秒,样品弹塑性转变时的应变约为0.02,则估算获得该冲击实验中应变率在107 s−1量级。实验Shot-1035和Shot-1039开展了初始马氏体相NiTi-1样品在初始温度为302 K的冲击实验,由样品后自由面曲线结果(见图7(b))可以看出,初始样品为马氏体相NiTi在冲击加载后速度约34 m/s处存在双波结构,为马氏体相的弹塑性转变点。实验Shot-1038开展了NiTi-1样品在初始温度为402 K的冲击实验,根据常压下样品初始相变温度结果,此初始温度下样品为奥氏体相,由样品后自由面曲线结果(见图7(b))可以看出,由于初始温度的影响,导致样品在冲击加载后动力学响应存在较大差异。在自由面速度约100 m/s时存在明显的双波结构,此时对应加载压力为1.72 GPa,为NiTi-1样品奥氏体相高温下的弹塑性转变点。
实验获得的不同初始温度、不同应变率条件下NiTi合金的弹性极限如图8所示。由图中相同组分、相同初始样品温度、不同应变率下NiTi合金的弹性极限可以看出,随着应变率从约105 s−1升高至107 s−1,弹性极限由约2 GPa增大至4 GPa,说明NiTi合金的弹性极限存在很强的应变率效应。在高于奥氏体相完成温度、相同加载应变率下,NiTi合金的弹性极限随着初始样品温度的升高而降低。与文献实验结果比较,冲击加载下,温度为402 K样品的弹性极限与文献[26]中413 K样品的结果相近。改变初始样品温度使得实验样品处于不同的初始相,由于奥氏体相NiTi合金与马氏体相NiTi合金在高应变率下的弹性极限差异较大,造成实验速度剖面也存在较大差异。此外,奥氏体NiTi合金在初始温度升高后,样品的弹性极限比常温下低,该现象与温度对材料强度热软化规律是一致的。
3. 总 结
研究不同初始相变温度NiTi合金的力学响应规律对完善其物理模型和指导应用设计具有重要意义。本文中,系统地开展了不同初始相变温度NiTi合金在10−3 s−1应变率准静态压缩-拉伸、105 s−1应变率准等熵压缩和107 s−1应变率的冲击加载实验,获得了不同加载条件下的应力-应变、弹塑性屈服等关键物理数据,取得以下主要认识与结论:
(1) 在准静态压缩和拉伸实验中,尽管初始马氏体相和初始奥氏体相NiTi合金的应力-应变曲线均出现2个模量变化引起的拐折点,但两者对应的应力幅值和物理过程不同。其中初始马氏体相NiTi合金的模量变化分别对应马氏体相畴域结构内的晶体重定向和不可逆塑性变形,而初始奥氏体相NiTi合金中的模量变化则由马氏体相变和相变后马氏体屈服引起。
(2) 获得了2种不同初始相变温度NiTi合金的准等熵压缩Lagrangian声速和准等熵压缩线,其中初始马氏体相NiTi合金的Lagrangian声速随粒子速度增大而增大,未观察到间断等非线性变化;而初始奥氏体相中声速曲线存在间断,声速由初始横波值间断减小至体波声速后再随粒子速度线性增大。
(3) 冲击加载下,初始奥氏体相NiTi合金样品的后自由面速度曲线上升沿存在显著的弹塑性转变双波结构,弹塑性转变粒子速度约为130 m/s。而马氏体相NiTi合金冲击实验中样品的初始温度对其变形机制有较大影响,样品初始温度为302 K时,后自由面速度约34 m/s处出现马氏体相弹塑性屈服引起的双波结构;样品初始温度升至402 K时,在后自由面速度约100 m/s时出现由奥氏体相塑性屈服引起的明显的双波结构。
(4) 随着应变率从约105 s−1升高至107 s−1,相同组分奥氏体相NiTi合金的弹性极限由约2 GPa增大至约4 GPa,107 s−1应变率下,随着初始样品温度升至402 K时,弹性极限降至1.7 GPa。结果表明,NiTi合金的弹性极限存在显著的温度和应变率效应。
感谢中国工程物理研究院流体物理研究所的陈学秒、吴刚、胥超、税荣杰在实验装置运行和测试中提供的帮助!
-
表 1 常压下NiTi合金的物性参数
Table 1. Physical parameters of NiTi alloys at normal conditions
编号 密度/(g·cm–3) 组分 TMs/K TMf/K TAs/K TAf/K cL0/(km·s–1) cs/(km·s–1) NiTi-1 6.40 Ni55Ti45 342.0 295.0 349.0 391.0 5.376 1.731 NiTi-2 6.40 Ni56Ti44 244.0 227.0 259.0 281.0 NiTi-3 6.40 Ni56Ti44 227.0 196.0 243.0 262.0 NiTi-4 6.42 Ni52Ti46-48 258.4 253.3 261.6 272.3 5.434 1.775 表 2 准静态加载下应力-应变曲线拐点应力
Table 2. Stress value of inflection point on stress-strain curve under quasi-static loading
编号 拉伸应力/MPa 压缩应力/MPa σPH或σA-M σP σPH或σA-M σP NiTi-1 230 657 266 1 528 NiTi-2 415 445 1 377 NiTi-3 400 534 1 198 NiTi-4 405 615 1 280 表 3 高应变率实验条件
Table 3. Conditions of high strain rate experiments
实验编号 实验加载方式 样品编号 样品材料 样品尺寸/mm 样品初始温度/K Shot-518 准等熵压缩 S1 NiTi-4 ∅12×2.010 300 S2 NiTi-4 ∅12×2.305 300 Shot-522 准等熵压缩 S1 NiTi-4 ∅12×2.012 300 S2 NiTi-4 ∅12×2.295 300 Shot-1036 准等熵压缩 S1 NiTi-1 ∅8×1.500 300 S2 NiTi-1 ∅8×1.802 300 Shot-1037 准等熵压缩 S1 NiTi-1 ∅8×1.498 346 S2 NiTi-1 ∅8×1.800 346 Shot-1040 准等熵压缩 S1 NiTi-1 ∅8×1.504 383 S2 NiTi-1 ∅8×1.804 383 Shot-653 冲击加载 NiTi-4 ∅8×1.010 300 Shot-654 冲击加载 NiTi-4 ∅8×1.004 300 Shot-1035 冲击加载 NiTi-1 8×8×0.809 302 Shot-1038 冲击加载 NiTi-1 8×8×0.800 402 Shot-1039 冲击加载 NiTi-1 8×8×0.800 302 -
[1] LAGOUDAS D C. Shape memory alloys: modeling and engineering applications [M]. New York: Springer Science and Business Media, 2008: 1–51. DOI: 10.1007/978-0-387-47685-8. [2] CHAU E T F, FRIEND C M, ALLEN D M, et al. A technical and economic appraisal of shape memory alloys for aerospace applications [J]. Materials Science and Engineering: A, 2006, 438/440: 589–592. DOI: 10.1016/j.msea.2006.02.201. [3] RAO A, SRINIVASA A R, REDDY J N. Design of shape memory alloy actuators [M]. New York: Springer Science and Business Media, 2015: 1–43. DOI: 10.1007/978-3-319-03188-0. [4] LECCE L, CONCILIO A. Shape memory alloy engineering: for aerospace, structural and biomedical applications [M]. Oxford: Butterworth-Heinemann, 2015: 1–40. [5] QIU Y, YOUNG M L, NIE X. High strain rate compression of martensitic NiTi shape memory alloys [J]. Shape Memory and Superelasticity, 2015, 1(35): 310–318. DOI: 10.1007/s40830-015-0035-y. [6] NASSER S N, CHOI J Y, GUO W G, et al. Very high strain-rate response of a NiTi shape-memory alloy [J]. Mechanics of Materials, 2005, 37: 287–298. DOI: 10.1016/j.mechmat.2004.03.007. [7] MILLETT J C F, BOURNE N K, GRAY G T. Behavior of the shape memory alloy NiTi during one-dimensional shock loading [J]. Journal of Applied Physics, 2002, 92(6): 3107–3110. DOI: 10.1063/1.1498877. [8] MILLETT J C F, BOURNE N K. The shock-induced mechanical response of the shape memory alloy NiTi [J]. Materials Science and Engineering: A, 2004, 378(S1): 138–142. DOI: 10.1016/j.msea.2003.10.334. [9] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017: 97–137.WANG L L, HU S S, YANG L M, et al. Material dynamics [M]. Hefei: University of Science and Technology of China Press, 2017: 97–137. [10] HUANG H, DURAND B, SUN Q P, et al. An experimental study of NiTi alloy under shear loading over a large range of strain rates [J]. International Journal of Impact Engineering, 2017, 108: 402–413. DOI: 10.1016/j.ijimpeng.2017.03.007. [11] LIU Y, LI Y L, RAMESH K T, et al. High strain rate deformation of martensitic NiTi shape memory alloy [J]. Scripta Materialia, 1999, 41: 89–95. DOI: 10.1016/S1359-6462(99)00058-5. [12] CHEN W W, WU Q P, KANG J H, et al. Compressive superelastic behavior of a NiTi shape memory alloy at strain rate of 0.001–750 s–1 [J]. International Journal of Solids and Structures, 2001, 38(50/51): 8989–8998. DOI: 10.1016/S0020-7683(01)00165-2. [13] BELYAEV S P, PETROV A, RAZOV A, et al. Mechanical properties of titanium nickelide at high strain rate loading [J]. Materials Science and Engineering: A, 2004, 378(1/2): 122–124. DOI: 10.1016/j.msea.2003.11.059. [14] NASSER S N, CHOI J Y, GUO W G, et al. High strain-rate, small strain response of a NiTi shape-memory alloy [J]. Journal of Engineering Materials and Technology, 2005, 127(1): 83–89. DOI: 10.1115/1.1839215. [15] ORGÉAS L, FAVIER D. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression [J]. Acta Materialia, 1998, 46(15): 5579–5591. DOI: 10.1016/S1359-6454(98)00167-0. [16] THAKUR A M, THADHANI N N, SCHWARZ R B. Shock-induced martensitic transformations in near-equiatomic NiTi alloys [J]. Metallurgical and Materials Transactions A, 1997, 28: 1445–1455. DOI: 10.1007/s11661-997-0207-2. [17] LV C, WANG G J, ZHANG X P, et al. Spalling modes and mechanisms of shocked nanocrystalline NiTi at different loadings and temperatures [J]. Mechanics of Materials, 2021, 161: 104004. DOI: 10.1016/j.mechmat.2021.104004. [18] LIAO Y L, YE C, LIN D, et al. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening [J]. Journal of Applied Physics, 2012, 112: 033515. DOI: 10.1063/1.4742997. [19] QI Z P, WANG F, WANG J, et al. Role of temperature and strain rate on the stress reversal in dynamic damage of monocrystalline NiTi alloy [J]. Mechanics of Materials, 2022, 165: 104185. DOI: 10.1016/j.mechmat.2021.104185. [20] 施绍裘, 陈江瑛, 董新龙, 等. 钛镍形状记忆合金冲击变形后形状记忆效应的研究 [J]. 爆炸与冲击, 2001, 21(3): 168–171.SHI S Q, CHEN J Y, DONG X L, et al. Study on shape memory effect of TiNi alloy after impact deformation [J]. Explosion and Shock Waves, 2001, 21(3): 168–171. [21] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. DOI: 10.1063/1.4788935. [22] ZHANG X P, WANG G J, ZHAO J H, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85(5): 055110. DOI: 10.1063/1.4875705. [23] ZHANG X P, WANG G J, LUO B Q, et al. Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate [J]. Journal of Alloys and Compounds, 2018, 731: 569–576. DOI: 10.1016/j.jallcom.2017.10.080. [24] 陶天炯, 翁继东, 王翔. 一种双源光外差测速技术 [J]. 光电工程, 2011, 38(10): 39–45. DOI: 10.3969/j.issn.1003-501X.2011.10.007.TAO T J, WENG J D, WANG X. A dual laser heterodyne velocimetry [J]. Opt-Electronic Engineering, 2011, 38(10): 39–45. DOI: 10.3969/j.issn.1003-501X.2011.10.007. [25] 李建中, 王德田, 刘俊, 等. 多点光子多普勒测速仪及其在爆轰物理领域的应用 [J]. 红外与激光工程, 2016, 45(4): 0422001. DOI: 10.3788/IRLA201645.0422001.LI J Z, WANG D T, LIU J, et al. Multi-channel photonic Doppler velocimetry and its application in the field of explosion physics [J]. Infrared and Laser Engineering, 2016, 45(4): 0422001. DOI: 10.3788/IRLA201645.0422001. [26] RAZORENOV S V, GARKUSHIN G V, KANEL G I, et al. Behavior of the nickel-titanium alloys with the shape memory effect under conditions of shock wave loading [J]. Physics of Solid State, 2011, 53: 824–829. DOI: 10.1134/S1063783411040305. -