波浪环境下带助浮装置航行体落水冲击流场及运动特性研究

王占莹 权晓波 段金雄 孙铁志

王占莹, 权晓波, 段金雄, 孙铁志. 波浪环境下带助浮装置航行体落水冲击流场及运动特性研究[J]. 爆炸与冲击, 2024, 44(11): 113901. doi: 10.11883/bzycj-2023-0260
引用本文: 王占莹, 权晓波, 段金雄, 孙铁志. 波浪环境下带助浮装置航行体落水冲击流场及运动特性研究[J]. 爆炸与冲击, 2024, 44(11): 113901. doi: 10.11883/bzycj-2023-0260
WANG Zhanying, QUAN Xiaobo, DUAN Jinxiong, SUN Tiezhi. Study on the impact flow field and the motion characteristics of vehicle with boost floatation aids falling on the water in a wave environment[J]. Explosion And Shock Waves, 2024, 44(11): 113901. doi: 10.11883/bzycj-2023-0260
Citation: WANG Zhanying, QUAN Xiaobo, DUAN Jinxiong, SUN Tiezhi. Study on the impact flow field and the motion characteristics of vehicle with boost floatation aids falling on the water in a wave environment[J]. Explosion And Shock Waves, 2024, 44(11): 113901. doi: 10.11883/bzycj-2023-0260

波浪环境下带助浮装置航行体落水冲击流场及运动特性研究

doi: 10.11883/bzycj-2023-0260
基金项目: 国家自然科学基金面上项目(52071062)
详细信息
    作者简介:

    王占莹(1983- ),女,博士,高级工程师,zhanyingwang123@163.com

    通讯作者:

    权晓波(1976- ),男,博士,研究员,quanxiaobo147@163.com

  • 中图分类号: O383; O368

Study on the impact flow field and the motion characteristics of vehicle with boost floatation aids falling on the water in a wave environment

  • 摘要: 为探究波浪环境下带助浮装置航行体下落冲击过程中的流场以及运动演化特性,基于CFD (computational fluid dynamics) 数值模拟技术,在方法上耦合了VOF (volume of fluid) 多相流模型、k-ω SST湍流模型、Schnerr-Sauer空化模型以及Stokes五阶非线性波理论,建立了一套针对入水冲击问题的数值计算方法,并采用速度边界法进行造波。经验证,试验与数值结果在下落位移上对比差异较小,该数值方法可靠有效,且造波结果与Stokes五阶非线性波理论吻合较好。然后,基于构建的数值方法,在不同波浪环境下对带助浮装置航行体下落入水冲击过程进行了数值模拟,计算带助浮装置航行体冲击过程的位移、速度、加速度以及助浮装置受力情况,分析冲击过程中航行体的运动学参数、动力学参数以及入水空泡流场演化过程,总结了波浪环境下带助浮装置航行体的入水冲击特性。结果表明,波浪环境对下落冲击过程的影响主要体现在运动衰减段,水平方向的冲击相较于垂直方向的冲击受到波浪环境的影响要大得多,不同海况对航行体的水平冲击造成的影响主要是通过影响入水空泡的形成与溃灭过程实现的。
  • 图  1  圆柱入水空泡形态试验与数值结果对比

    Figure  1.  Comparison of experimental and numerical results of cylindrical water-entry cavitation

    图  2  圆柱下落冲击过程质心位置时历曲线对比

    Figure  2.  Comparison of the time history curves of centroid position during cylinder falling impact

    图  3  数值造波水池几何模型

    Figure  3.  Numerical wave pool geometry model

    图  4  浪高仪布置情况

    Figure  4.  The layout of waveprobes

    图  5  t=35 s时刻计算域中波浪波高分布情况

    Figure  5.  Wave height distribution in the calculation domain at time t=35 s

    图  6  x=20 m处与x=40 m处波高时历曲线

    Figure  6.  Time history curve of wave height at x=20 m and x=40 m

    图  7  计算模型几何尺寸

    Figure  7.  The geometric dimensions of computational model

    图  8  计算域设置与网格划分方案

    Figure  8.  Computing domain setup and meshing scheme

    图  9  助浮装置转动方向示意与转动角度变化时历曲线

    Figure  9.  Boost floatation aids rotation direction and time history curve of rotation angle

    图  10  航行体初始下落位置

    Figure  10.  Initial drop position of vehicle

    图  11  网格无关性计算结果

    Figure  11.  Grid independence calculation results

    图  12  航行体下落-下沉-上浮过程

    Figure  12.  Vehicle fall-sink-rise process

    图  13  航行体位移时历曲线图

    Figure  13.  Time history curves of vehicle’s displacement

    图  14  航行体速度时历曲线

    Figure  14.  Time history curves of vehicle’s velocity

    图  15  航行体冲击下落过程速度方向矢量

    Figure  15.  Velocity vectors of vehicle during impact fall process

    图  16  航行体转角时历曲线

    Figure  16.  Time history curve of vehicle’s angle

    图  17  带助浮装置航行体加速度时程曲线

    Figure  17.  Acceleration time history curve of vehicle with boost floatation aids

    图  18  入水空泡发展过程

    Figure  18.  Development process of water-entry cavity

    图  19  助浮装置受力时历曲线

    Figure  19.  Time history curves of boost floatation aids’ force

    图  20  压力监测点布置位置

    Figure  20.  Location of pressure monitor points

    图  21  监测点压力时程曲线

    Figure  21.  Time history curves of the pressure at monitor points

    图  22  不同工况下航行体下落-下沉-上浮过程

    Figure  22.  Vehicle fall-sink-rise process under different working conditions

    图  23  不同工况下航行体位移时历曲线

    Figure  23.  Displacement history of the vehicle under different working conditions

    图  24  不同工况下航行体速度时历曲线

    Figure  24.  Velocity history of vehicle under different working conditions

    图  25  不同工况下带助浮装置航行体加速度时历曲线

    Figure  25.  Acceleration time history curves of vehicle with boost floatation aids under different working conditions

    图  26  不同工况下入水空泡流场中截面示意图

    Figure  26.  Schematic diagram of mid-profile in the flow field of water-entry cavity under different working conditions

    表  1  工况设置

    Table  1.   Working conditions setting

    工况波高/m波周期/s
    10.503.0
    20.753.0
    31.003.0
    41.253.0
    50.00/
    下载: 导出CSV
  • [1] 杨继锋, 刘丙杰, 陈捷, 等. 潜射弹道导弹水下大深度发射技术途径分析 [J]. 兵器装备工程学报, 2020, 41(6): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.

    YANG J F, LIU B J, CHEN J, et al. Research on underwater large depth launching technology of submarine launched ballistic missile [J]. Journal of Ordnance Equipment Engineering, 2020, 41(6): 32–36. DOI: 10.11809/bqzbgcxb2020.06.007.
    [2] 张晓光, 李斌, 党会学, 等. 水下航行体充气上浮仿真方法研究 [J]. 兵工学报, 2020, 41(7): 1249–1261. DOI: 10.3969/j.issn.1000-1093.2020.07.001.

    ZHANG X G, LI B, DANG H X, et al. A simulation method for inflatable floating of underwater vehicle [J]. Acta Armamentarii, 2020, 41(7): 1249–1261. DOI: 10.3969/j.issn.1000-1093.2020.07.001.
    [3] DANG H X, ZHANG X G, LI B, et al. Multi-disciplinary co-simulation of floating process induced by pneumatic inflatable collar for underwater vehicle recovery [J]. Ocean Engineering, 2020, 216: 108008. DOI: 10.1016/j.oceaneng.2020.108008.
    [4] 王晓辉, 李鹏, 孙士明, 等. 射弹高速入水尾拍载荷和弹道特性的数值研究 [J]. 船舶力学, 2022, 26(8): 1111–1119. DOI: 10.3969/j.issn.1007-7294.2022.08.001.

    WANG X H, LI P, SUN S M, et al. Numerical study on hydrodynamic and ballistic characteristics of projectile’s high-speed water-entry process [J]. Journal of Ship Mechanics, 2022, 26(8): 1111–1119. DOI: 10.3969/j.issn.1007-7294.2022.08.001.
    [5] DENG F, SUN X Y, CHI F H, et al. A numerical study on the water entry of cylindrical trans-media vehicles [J]. Aerospace, 2022, 9(12): 805. DOI: 10.3390/aerospace9120805.
    [6] WU X C, CHANG X, LIU S W, et al. Numerical study on the water entry impact forces of an air-launched underwater glider under wave conditions [J]. Shock and Vibration, 2022, 2022: 4330043. DOI: 10.1155/2022/4330043.
    [7] 邹田春, 高飞, 魏家威, 等. 圆柱体垂直入水三维数值模拟及影响因素研究 [J]. 振动与冲击, 2022, 41(10): 177–185. DOI: 10.13465/j.cnki.jvs.2022.10.023.

    ZOU T C, GAO F, WEI J W, et al. Three-dimensional numerical simulation and influencing factors study on the vertical water entry of a circular cylinder [J]. Journal of Vibration and Shock, 2022, 41(10): 177–185. DOI: 10.13465/j.cnki.jvs.2022.10.023.
    [8] 祁晓斌, 刘喜燕, 王瑞, 等. 高速射弹小角度入水数值模拟研究 [J]. 中国造船, 2022, 63(3): 31–39. DOI: 10.3969/j.issn.1000-4882.2022.03.004.

    QI X B, LIU X Y, WANG R, et al. Numerical simulation of water entry for high-speed projectile at small angle [J]. Shipbuilding of China, 2022, 63(3): 31–39. DOI: 10.3969/j.issn.1000-4882.2022.03.004.
    [9] 宋武超, 王聪, 魏英杰, 等. 不同头型回转体低速倾斜入水过程流场特性数值模拟 [J]. 北京理工大学学报, 2017, 37(7): 661–666,671. DOI: 10.15918/j.tbit1001-0645.2017.07.001.

    SONG W C, WANG C, WEI Y J, et al. Numerical simulation of the flow field characteristics of low speed oblique water entry of revolution body [J]. Transactions of Beijing Institute of Technology, 2017, 37(7): 661–666,671. DOI: 10.15918/j.tbit1001-0645.2017.07.001.
    [10] DONG L Y, WEI Z Y, ZHOU H Y, et al. Numerical study on the water entry of a freely falling unmanned aerial-underwater vehicle [J]. Journal of Marine Science and Engineering, 2023, 11(3): 552. DOI: 10.3390/jmse11030552.
    [11] YUAN K, YU J W, GU X, et al. Numerical investigation on drag characteristics of the truncated hemispherical-nose projectile in vertical water entry [J]. Ships and Offshore Structures, 2023, 18(12): 1726–1736. DOI: 10.1080/17445302.2022.2140526.
    [12] HUANG L F, TAVAKOLI S, LI M H, et al. CFD analyses on the water entry process of a freefall lifeboat [J]. Ocean Engineering, 2021, 232: 109115. DOI: 10.1016/j.oceaneng.2021.109115.
    [13] 史崇镔. 跨介质结构物出入水多相流体动力学特性研究 [D]. 大连: 大连理工大学, 2021. DOI: 10.26991/d.cnki.gdllu.2021.002803.

    SHI C B. Study on the multiphase fluid hydrodynamics characteristics of water entry and water exit for trans-medium structures [D]. Dalian: Dalian University of Technology, 2021. DOI: 10.26991/d.cnki.gdllu.2021.002803.
    [14] 杨晓光, 党建军, 王鹏, 等. 波面环境对高速入水载荷及弹道特性影响试验研究 [J]. 西北工业大学学报, 2021, 39(6): 1259–1265. DOI: 10.3969/j.issn.1000-2758.2021.06.011.

    YANG X G, DANG J J, WANG P, et al. Experimental research on influence of wave environment on high-speed water entry load and trajectory characteristics [J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1259–1265. DOI: 10.3969/j.issn.1000-2758.2021.06.011.
    [15] 李治涛, 赵世平, 卢丙举, 等. 高速旋转射弹波浪入水多相流场与弹道特征数值仿真研究 [J]. 振动与冲击, 2022, 41(8): 55–71. DOI: 10.13465/j.cnki.jvs.2022.08.007.

    LI Z T, ZHAO S P, LU B J, et al. Numerical simulation of multiphase flow field and trajectory characteristics of high-speed spinning projectile entry water in wave [J]. Journal of Vibration and Shock, 2022, 41(8): 55–71. DOI: 10.13465/j.cnki.jvs.2022.08.007.
    [16] ZHANG Y F, MA S, SHAO W B, et al. Numerical investigation on the water entry of curved wedge-shaped sections into waves [J]. Ocean Engineering, 2023, 275: 114155. DOI: 10.1016/j.oceaneng.2023.114155.
    [17] ZHAO C Z, WANG Q, LU H C, et al. Vertical water entry of a hydrophobic sphere into waves: numerical computations and experiments [J]. Physics of Fluids, 2023, 35(7): 073324. DOI: 10.1063/5.0160041.
    [18] CHENG Y, YUAN D C, JI C Y. Water entry of a floating body into waves with air cavity effect [J]. Journal of Fluids and Structures, 2021, 104: 103302. DOI: 10.1016/j.jfluidstructs.2021.103302.
    [19] 赵蛟龙, 孙龙泉, 张忠宇, 等. 柱形空腔结构落水载荷及冲击响应研究 [J]. 振动与冲击, 2013, 32(20): 113–118. DOI: 10.3969/j.issn.1000-3835.2013.20.022.

    ZHAO J L, SUN L Q, ZHANG Z Y, et al. Hydrodynamic loads and impact response for a water entry of a cylindrical cavitary structure [J]. Journal of Vibration and Shock, 2013, 32(20): 113–118. DOI: 10.3969/j.issn.1000-3835.2013.20.022.
    [20] 陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析 [J]. 爆炸与冲击, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.

    CHEN Y, WU L, ZHEN G W, et al. Numerical analysis of the water entry process of a projectile with a circular airbag [J]. Explosion and Shock Waves, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.
    [21] 陈开颜, 陈辉, 魏海鹏, 等. 带囊回转体落水仿真与试验研究 [J]. 船舶力学, 2022, 26(3): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.

    CHEN K Y, CHEN H, WEI H P, et al. Simulation and experimental study on a cylinder with airbags falling into water [J]. Journal of Ship Mechanics, 2022, 26(3): 315–322. DOI: 10.3969/j.issn.1007-7294.2022.03.001.
    [22] 包健, 马贵辉, 孙龙泉, 等. 带椭球形气囊航行体落水-上浮过程仿真 [J]. 兵工学报, 2024, 45(1): 206–218. DOI: 10.12382/bgxb.2022.0503.

    BAO J, MA G H, SUN L Q, et al. Simulation of falling-floating process of vehicle with ellipsoidal airbags [J]. Acta Armamentarii, 2024, 45(1): 206–218. DOI: 10.12382/bgxb.2022.0503.
    [23] STEELANT J, DICK E. Modeling of laminar-turbulent transition for high freestream turbulence [J]. Journal of Fluids Engineering, 2001, 123(1): 22–30. DOI: 10.1115/1.1340623.
    [24] PLESSET M S. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16(3): 277–282. DOI: 10.1115/1.4009975.
    [25] FENTON J D. A fifth-order stokes theory for steady waves [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1985, 111(2): 216–234. DOI: 10.1061/(ASCE)0733-950X(1985)111:2(216).
    [26] KIM J, O’SULLIVAN J, READ A. Ringing analysis of a vertical cylinder by Euler overlay method [C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro: American Society of Mechanical Engineers, 2012: 855–866. DOI: 10.1115/OMAE2012-84091.
    [27] WEI Z Y, HU C H. An experimental study on water entry of horizontal cylinders [J]. Journal of Marine Science and Technology, 2014, 19(3): 338–350. DOI: 10.1007/s00773-013-0252-z.
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  48
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2024-06-27
  • 网络出版日期:  2024-06-27
  • 刊出日期:  2024-11-15

目录

    /

    返回文章
    返回