飞秒脉冲激光冲击强化中等离子体压力时空演化规律

倪辉

倪辉. 飞秒脉冲激光冲击强化中等离子体压力时空演化规律[J]. 爆炸与冲击, 2024, 44(2): 023202. doi: 10.11883/bzycj-2023-0262
引用本文: 倪辉. 飞秒脉冲激光冲击强化中等离子体压力时空演化规律[J]. 爆炸与冲击, 2024, 44(2): 023202. doi: 10.11883/bzycj-2023-0262
NI Hui. Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening[J]. Explosion And Shock Waves, 2024, 44(2): 023202. doi: 10.11883/bzycj-2023-0262
Citation: NI Hui. Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening[J]. Explosion And Shock Waves, 2024, 44(2): 023202. doi: 10.11883/bzycj-2023-0262

飞秒脉冲激光冲击强化中等离子体压力时空演化规律

doi: 10.11883/bzycj-2023-0262
详细信息
    作者简介:

    倪 辉(1999- ),男,硕士研究生,nihui@mail.ustc.edu.cn

  • 中图分类号: O383; O539

Plasma pressure over time-space evolution law for femtosecond pulses laser shock peening

  • 摘要: 为研究飞秒脉冲激光冲击强化中等离子体压力时空演化规律,利用考虑电子态密度(DOS)效应的模型计算了电子热容和电声耦合系数随电子温度的演化规律,并与采用QEOS(quotidian equation of state)模型计算结果进行了对比;提出DOS飞秒脉冲激光冲击强化模型,计算得到电子温度、晶格温度、等离子体羽位置时间演化规律和等离子体压力时空演化规律,并与QEOS飞秒脉冲激光冲击强化模型结果进行了对比。结果表明:DOS飞秒脉冲激光冲击强化模型计算得到的等离子体羽位置随时间的演化规律与实验结果吻合程度更好;增加激光能量或功率密度、考虑电子DOS效应会增加电子、晶格温度和等离子体压力。
  • 图  1  飞秒脉冲激光冲击强化示意

    Figure  1.  Schematic illustration of femtosecond pulses laser shock peening

    图  2  等离子体羽的位置随时间的演化规律

    Figure  2.  Plasma plume front location at different times

    图  3  电子热容(Ce)和电声耦合系数(G)随电子温度演化规律

    Figure  3.  Electron heat capacity (Ce) and electron-phonon coefficient (G) versus electron temperature

    图  4  电子温度和晶格温度的时间演化规律

    Figure  4.  Electron temperature and lattice temperature histories

    图  5  等离子体压力时间演化规律

    Figure  5.  Plasma pressure histories at the ablative coating surface

    图  6  压力在z轴方向上的分布(t=4 ps)

    Figure  6.  Plasma pressure distribution in z axis (t=4 ps)

  • [1] HU Y X, YAO Z Q, HU J. 3-D FEM simulation of laser shock processing [J]. Surface and Coatings Technology, 2006, 201(3/4): 1426–1435. DOI: 10.1016/j.surfcoat.2006.02.018.
    [2] 吴先前, 段祝平, 黄晨光, 等. 激光冲击强化过程中蒸气等离子体压力计算的耦合模型 [J]. 爆炸与冲击, 2012, 32(1): 1–7. DOI: 10.11883/1001-1455(2012)01-0001-07.

    WU X Q, DUAN Z P, HUANG C G, et al. A coupling model for computing plasma pressure induced by laser shock peening [J]. Explosion and Shock Waves, 2012, 32(1): 1–7. DOI: 10.11883/1001-1455(2012)01-0001-07.
    [3] DEVAUX D, FABBRO R, TOLLIER L, et al. Generation of shock waves by laser-induced plasma in confined geometry [J]. Journal of Applied Physics, 1993, 74(4): 2268–2273. DOI: 10.1063/1.354710.
    [4] WU B X, SHIN Y C. Laser pulse transmission through the water breakdown plasma in laser shock peening [J]. Applied Physics Letters, 2006, 88(4): 041116. DOI: 10.1063/1.2168022.
    [5] WU X Q, DUAN Z P, SONG H W, et al. Shock pressure induced by glass-confined laser shock peening: experiments, modeling and simulation [J]. Journal of Applied Physics, 2011, 110(5): 053112. DOI: 10.1063/1.3633266.
    [6] XIONG Q L, SHIMADA T, KITAMURA T, et al. Atomic investigation of effects of coating and confinement layer on laser shock peening [J]. Optics & Laser Technology, 2020, 131: 106409. DOI: 10.1016/j.optlastec.2020.106409.
    [7] RONDEPIERRE A, ÜNALDI S, ROUCHAUSSE Y, et al. Beam size dependency of a laser-induced plasma in confined regime: shortening of the plasma release. Influence on pressure and thermal loading [J]. Optics & Laser Technology, 2021, 135(1): 106689. DOI: 10.1016/j.optlastec.2020.106689.
    [8] WU B X, TAO S, LEI S T. Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments [J]. Applied Surface Science, 2010, 256(13): 4376–4382. DOI: 10.1016/j.apsusc.2010.02.034.
    [9] NAKANO H, MIYAUTI S, BUTANI N, et al. Femtosecond laser peening of stainless steel [J]. Journal of Laser Micro/Nanoengineering, 2009, 4(1): 35–38. DOI: 10.2961/jlmn.2009.01.0007.
    [10] LEE D, KANNATEY-ASIBU JR E. Experimental investigation of laser shock peening using femtosecond laser pulses [J]. Journal of Laser Applications, 2011, 23(2): 022004. DOI: 10.2351/1.3573370.
    [11] AGEEV E I, BYCHENKOV V Y, IONIN A A, et al. Double-pulse femtosecond laser peening of aluminum alloy AA5038: effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness [J]. Applied Physics Letters, 2016, 109(21): 211902. DOI: 10.1063/1.4968594.
    [12] SANO T, EIMURA T, KASHIWABARA R, et al. Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions [J]. Journal of Laser Applications, 2017, 29(1): 012005. DOI: 10.2351/1.4967013.
    [13] HOPPIUS J S, KUKREJA L M, KNYAZEVA M, et al. On femtosecond laser shock peening of stainless steel AISI 316 [J]. Applied Surface Science, 2018, 435: 1120–1124. DOI: 10.1016/j.apsusc.2017.11.145.
    [14] WANG H, PÖHL F, YAN K, et al. Effects of femtosecond laser shock peening in distilled water on the surface characterizations of NiTi shape memory alloy [J]. Applied Surface Science, 2019, 471: 869–877. DOI: 10.1016/j.apsusc.2018.12.087.
    [15] AGEEV E I, ANDREEVA Y M, IONIN A A, et al. Single-shot femtosecond laser processing of Al-alloy surface: an interplay between Mbar shock waves, enhanced microhardness, residual stresses, and chemical modification [J]. Optics & Laser Technology, 2020, 126: 106131. DOI: 10.1016/j.optlastec.2020.106131.
    [16] CHEN L, WANG Z S, GAO S, et al. Investigation on femtosecond laser shock peening of commercially pure copper without ablative layer and confinement layer in air [J]. Optics & Laser Technology, 2022, 153: 108207. DOI: 10.1016/j.optlastec.2022.108207.
    [17] TAN S, WU J J, ZHANG Y, et al. A model of ultra-short pulsed laser ablation of metal with considering plasma shielding and non-fourier effect [J]. Energies, 2018, 11(11): 3163. DOI: 10.3390/en11113163.
    [18] KIRAN KUMAR K, SAMUEL G L, SHUNMUGAM M S. Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy [J]. Journal of Materials Processing Technology, 2019, 263: 266–275. DOI: 10.1016/j.jmatprotec.2018.08.028.
    [19] FAIRAND B P, CLAUER A H. Laser generation of high-amplitude stress waves in materials [J]. Journal of Applied Physics, 1979, 50(3): 1497–1502. DOI: 10.1063/1.326137.
    [20] FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry [J]. Journal of Applied Physics, 1990, 68(2): 775–784. DOI: 10.1063/1.346783.
    [21] PEYRE P, SOLLIER A, CHAIEB I, et al. FEM simulation of residual stresses induced by laser peening [J]. The European Physical Journal Applied Physics, 2003, 23(2): 83–98. DOI: 10.1051/epjap:2003037.
    [22] WU B X, SHIN Y C. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments [J]. Journal of Applied Physics, 2005, 97(11): 113517. DOI: 10.1063/1.1915537.
    [23] LAVILLE S, VIDAL F, JOHNSTON T W, et al. Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors [J]. Physical Review E, 2002, 66(6): 066415. DOI: 10.1103/PhysRevE.66.066415.
    [24] RETHFELD B, SOKOLOWSKI-TINTEN K, VON DER LINDE D, et al. Timescales in the response of materials to femtosecond laser excitation [J]. Applied Physics A, 2004, 79(4): 767–769. DOI: 10.1007/s00339-004-2805-9.
    [25] WU B X, SHIN Y C. A simple model for high fluence ultra-short pulsed laser metal ablation [J]. Applied Surface Science, 2007, 253(8): 4079–4084. DOI: 10.1016/j.apsusc.2006.09.007.
    [26] ALEXOPOULOU V E, MARKOPOULOS A P. A critical assessment regarding two-temperature models: an investigation of the different forms of two-temperature models, the various ultrashort pulsed laser models and computational methods [J]. Archives of Computational Methods in Engineering, 2023, 31(6). DOI: 10.1007/s11831-023-09974-1.
    [27] LIN Z B, ZHIGILEI L V, CELLI V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium [J]. Physical Review B, 2008, 77(7): 075133. DOI: 10.1103/PhysRevB.77.075133.
    [28] ZHANG Z Y, NIAN Q, DOUMANIDIS C C, et al. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing [J]. Journal of Applied Physics, 2018, 123(5): 054901. DOI: 10.1063/1.5021894.
    [29] WU B X, SHIN Y C. A one-dimensional hydrodynamic model for pressures induced near the coating-water interface during laser shock peening [J]. Journal of Applied Physics, 2007, 101(2): 023510. DOI: 10.1063/1.2426981.
    [30] ZHANG N, ZHU X N, YANG J J, et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum [J]. Physical Review Letters, 2007, 99(16): 167602. DOI: 10.1103/PhysRevLett.99.167602.
  • 加载中
图(6)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  50
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2023-12-15
  • 网络出版日期:  2024-01-07
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回