多脉冲加载下PBX装药的应力放大效应

何杨 胡秋实 仲苏洋 廖深飞 李涛 傅华

何杨, 胡秋实, 仲苏洋, 廖深飞, 李涛, 傅华. 多脉冲加载下PBX装药的应力放大效应[J]. 爆炸与冲击, 2024, 44(6): 062301. doi: 10.11883/bzycj-2023-0267
引用本文: 何杨, 胡秋实, 仲苏洋, 廖深飞, 李涛, 傅华. 多脉冲加载下PBX装药的应力放大效应[J]. 爆炸与冲击, 2024, 44(6): 062301. doi: 10.11883/bzycj-2023-0267
HE Yang, HU Qiushi, ZHONG Suyang, LIAO Shenfei, LI Tao, FU Hua. Stress amplification effect of PBX charge under multi-pulse loading[J]. Explosion And Shock Waves, 2024, 44(6): 062301. doi: 10.11883/bzycj-2023-0267
Citation: HE Yang, HU Qiushi, ZHONG Suyang, LIAO Shenfei, LI Tao, FU Hua. Stress amplification effect of PBX charge under multi-pulse loading[J]. Explosion And Shock Waves, 2024, 44(6): 062301. doi: 10.11883/bzycj-2023-0267

多脉冲加载下PBX装药的应力放大效应

doi: 10.11883/bzycj-2023-0267
基金项目: 中国工程物理研究院院长基金(YZJJZL2023014)
详细信息
    作者简介:

    何 杨(1996- ),女,硕士,研究实习员,heyang0820@163.com

    通讯作者:

    胡秋实(1984- ),男,博士,助理研究员,qiushihu@126.com

  • 中图分类号: O389

Stress amplification effect of PBX charge under multi-pulse loading

  • 摘要: 针对弹体侵彻过程中装药常常受到多脉冲载荷作用的问题,提出了一种装药多脉冲加载装置,研究了多脉冲加载下装药的应力放大效应。基于集中质量法建立了多脉冲加载装置的等效弹簧模型,对产生应力放大的条件进行了探讨。结果表明,多脉冲载荷频率与装药固有频率匹配时系统发生共振,装药产生响应放大,放大倍数随结构间隙宽度的增加而降低。装药多脉冲加载下存在一个时间区间,撞击加载的发生时刻落在该区间内时系统可产生放大效果。对高聚物黏结炸药 (polymer bonded explosive, PBX) 模拟材料,实现了实验室条件下应力幅值百兆帕、脉冲间隔毫秒级、脉冲次数3次且幅值逐渐放大的多脉冲载荷加载。
  • 图  1  装药多脉冲加载装置

    Figure  1.  Multi-pulse loading device for charge

    图  2  嵌套子弹截面参数

    Figure  2.  Cross-sectional parameters of nested projectile

    图  3  多脉冲加载装置等效弹簧模型

    Figure  3.  Equivalent spring model of multi-pulse loading device

    图  4  不同间隙宽度下系统幅-频响应曲线

    Figure  4.  Amplitude-frequency response curves with different gap width

    图  5  系统幅-频响应曲线峰值随阻尼、间隙的变化规律

    Figure  5.  Variation of peak value of amplitude-frequency response curves with damping coefficient and gap width

    图  6  构造的多脉冲载荷及等效弹簧系统位移响应情况

    Figure  6.  Constructed multi-pulse load and displacement response of equivalent spring system

    图  7  三脉冲载荷的傅里叶频谱

    Figure  7.  Fourier spectrum of three-pulse load

    图  8  多脉冲加载装置有限元模型

    Figure  8.  Finite element model of multi-pulse loading device

    图  9  不同∆L1下样品的应力时程曲线

    Figure  9.  Stress time history curves of samples under different ∆L1

    图  10  不同∆L1下T形传力杆的位移和中层子弹头部的应力

    Figure  10.  Displacement of T-shaped transmission bar and stress of middle projectile head under different ∆L1

    图  11  样品应力最优放大效果

    Figure  11.  Optimal amplification effect of sample stress

    图  12  T形传力杆位移和中层、外层子弹头部应力

    Figure  12.  Displacement of T-shaped transmission bar and stress in middle and outer projectile head

    图  13  多脉冲加载实验装置示意图

    Figure  13.  Schematic diagram of multi-pulse loading experimental device

    图  14  实验装置实物

    Figure  14.  Physical diagram of experimental device

    图  15  样品压力-时间历程实验结果

    Figure  15.  Experimental results of pressure-time history of samples

    图  16  子弹、限位块和T形传力杆相对位置高速摄影图片

    Figure  16.  High-speed photographic picture of the relative position of projectiles, limiting block and T-shaped transmission bar

    表  1  实验结果

    Table  1.   Experimental results

    编号 样品 规格尺寸/mm 子弹速度/(m·s−1) 放大效应
    1 聚四氟乙烯 $\varnothing $20×20 17 放大
    2 聚四氟乙烯 $\varnothing $20×20 17 放大
    3 聚四氟乙烯+PBX-3 $\varnothing $20×16+$\varnothing $20×4 17 放大
    4 聚四氟乙烯 $\varnothing $20×20 21 不放大
    5 聚四氟乙烯+PBX-3 $\varnothing $20×16+$\varnothing $20×4 21 不放大
    下载: 导出CSV
  • [1] 高金霞, 赵卫刚, 郑腾. 侵彻战斗部装药抗过载技术研究 [J]. 火工品, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.

    GAO J X, ZHAO W G, ZHENG T. Study on the anti-overloading technique for penetrating warhead charge [J]. Initiators & Pyrotechnics, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.
    [2] 张萌昭, 周涛, 郭洪福, 等. 侵彻多层间隔靶板装药损伤特性研究 [J]. 兵器装备工程学报, 2021, 42(12): 92–97. DOI: 10.11809/bqzbgcxb2021.12.013.

    ZHANG M Z, ZHOU T, GUO H F, et al. Experimental study of charge damage in multi-layer target penetration process [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 92–97. DOI: 10.11809/bqzbgcxb2021.12.013.
    [3] 成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004.

    CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single-or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004.
    [4] 张琪林, 段卓平, 孟凡星, 等. 浇注炸药PBX-1侵彻安定性试验与数值模拟 [J]. 含能材料, 2021, 29(2): 107–113. DOI: 10.11943/CJEM2020203.

    ZHANG Q L, DUAN Z P, MENG F X, et al. Experiments and numerical simulations of penetration stability of cast charge PBX-1 [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 107–113. DOI: 10.11943/CJEM2020203.
    [5] LI X, LIU Y Z, SUN Y. Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration [J]. Polymers, 2020, 12(6): 1342. DOI: 10.3390/polym12061342.
    [6] LEFRANCIOS A, LAMBERT P, CHESNET P, et al. Microstructural analysis of HE submitted to penetration experiments [C]//Proceedings of the 31st International Pyrotechnics Seminar. Fort Collins, Colorado, USA: IPS USA Seminar, 2004: 687–705.
    [7] 李晓. 侵彻过程中PBX装药的损伤与点火机制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020: 93–98.
    [8] 张馨予, 吴艳青, 黄风雷. PBX装药弹体侵彻混凝土薄板的数值模拟 [J]. 含能材料, 2018, 26(1): 101–108. DOI: 10.11943/j.issn.1006-9941.2018.01.013.

    ZHANG X Y, WU Y Q, HUANG F L. Numerical simulation on the dynamic damage of PBX charges filled in projectiles during penetrating thin concrete targets [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 101–108. DOI: 10.11943/j.issn.1006-9941.2018.01.013.
    [9] 白晨, 杨昆, 吴艳青, 等. 不同类型装药侵彻安全性数值模拟 [J]. 高压物理学报, 2021, 35(6): 065101. DOI: 10.11858/gywlxb.20210754.

    BAI C, YANG K, WU Y Q, et al. Numerical simulation of penetration safety of different types of charges [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065101. DOI: 10.11858/gywlxb.20210754.
    [10] LUO H Y, CHEN W N W, RAJENDRAN A W. Dynamic compressive response of damaged and interlocked SiC-N ceramics [J]. Journal of the American Ceramic Society, 2006, 89(1): 266–273. DOI: 10.1111/j.1551-2916.2005.00688.x.
    [11] NIE X, CHEN W. High-rate progressive failure of borosilicate glass under mechanical confinement at high temperatures [J]. Experimental Mechanics, 2013, 53(1): 67–75. DOI: 10.1007/s11340-012-9635-z.
    [12] XIA K, CHEN R, HUANG S, et al. Controlled multipulse loading with a stuffed striker in classical split Hopkinson pressure bar testing [J]. Review of Scientific Instruments, 2008, 79(5): 053906. DOI: 10.1063/1.2928810.
    [13] 李亮亮, 屈可朋, 沈飞, 等. 基于霍普金森压杆的RDX基含铝炸药装药双脉冲加载实验 [J]. 火炸药学报, 2018, 41(1): 52–56. DOI: 10.14077/j.issn.1007-7812.2018.01.010.

    LI L L, QU K P, SHEN F, et al. Double-pulse loading experiment of RDX based aluminized explosive charge based on Hopkinson pressure bar [J]. Chinese Journal of Explosives & Propellants, 2018, 41(1): 52–56. DOI: 10.14077/j.issn.1007-7812.2018.01.010.
    [14] 聂少云, 薛鹏伊, 代晓淦. 模拟多层穿靶过程装药安全性评价方法 [J]. 火炸药学报, 2020, 43(5): 537–542. DOI: 10.14077/j.issn.1007-7812.201907015.

    NIE S Y, XUE P Y, DAI X G. Method of evaluating the safety of charging in a multi-layer penetration process [J]. Chinese Journal of Explosives & Propellants, 2020, 43(5): 537–542. DOI: 10.14077/j.issn.1007-7812.201907015.
    [15] 李亮亮, 孙兴昀, 付改侠, 等. 两次脉冲加载条件下炸药装药的安全性实验技术 [J]. 爆破器材, 2022, 51(2): 31–34. DOI: 10.3969/j.issn.1001-8352.2022.02.005.

    LI L L, SUN X Y, FU G X, et al. Experimental technology of safety of explosive charge under two pulse loading conditions [J]. Explosive Materials, 2022, 51(2): 31–34. DOI: 10.3969/j.issn.1001-8352.2022.02.005.
    [16] CHIDESTER S K, TRAVER C M, DEPIERO A H, et al. Single and multiple impact ignition of new and aged high explosives in the steven impact test [C]//Shock Compression of Condensed Matter-1999. Snowbird, Utah, USA: AIP Conference Proceedings, 2000: 663–666. DOI: 10.1063/1.1303560.
    [17] HUANG W K, CHEN G X, HU M B, et al. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch [J]. Review of Scientific Instruments, 2019, 90(2): 025110. DOI: 10.1063/1.5077051.
    [18] 李慧乐, 夏禾, 郭薇薇. 移动荷载作用下简支梁共振与消振机理研究 [J]. 工程力学, 2013, 30(7): 47–54. DOI: 10.6052/j.issn.1000-4750.2012.03.0218.

    LI H L, XIA H, GUO W W. Study on mechanism of resonance and vibration cancellation for simply-supported beam under moving loads [J]. Engineering Mechanics, 2013, 30(7): 47–54. DOI: 10.6052/j.issn.1000-4750.2012.03.0218.
    [19] 时瑾, 姚忠达, 王英杰. 二轴列车行经序列等跨桥时车辆共振响应分析 [J]. 振动与冲击, 2019, 38(5): 237–258. DOI: 10.13465/j.cnki.jvs.2019.05.034.

    SHI J, YAO Z D, WANG Y J. Resonance responses of vehicle during a two-axle train passing through sequential equal-span bridges [J]. Journal of Vibration and Shock, 2019, 38(5): 237–258. DOI: 10.13465/j.cnki.jvs.2019.05.034.
    [20] 王涛, 刘德贵, 黄辉. 大跨度铁路斜拉桥全桥索-梁相关振动研究 [J]. 振动与冲击, 2019, 38(17): 103–114. DOI: 10. 13465/j.cnki.jvs.2019.17.014. DOI: 10.13465/j.cnki.jvs.2019.17.014.

    WANG T, LIU D G, HUANG H. Cable-beam related vibration of a long span railway cable-stayed bridge [J]. Journal of Vibration and Shock, 2019, 38(17): 103–114. DOI: 10.13465/j.cnki.jvs.2019.17.014.
    [21] 卢绪祥, 刘正强, 黄树红, 等. 含间隙碰撞振动系统的非线性振动特性 [J]. 动力工程学报, 2012, 32(5): 388–393. DOI: 10.3969/j.issn.1674-7607.2012.05.009.

    LU X X, LIU Z Q, HUANG S H, et al. Nonlinear vibration characteristics of a vibro-impact system with clearance [J]. Journal of Chinese Society of Power Engineering, 2012, 32(5): 388–393. DOI: 10.3969/j.issn.1674-7607.2012.05.009.
    [22] 刘延柱. 振动力学 [M]. 3版. 北京: 高等教育出版社, 1998: 239–246.
    [23] HOSSAIN M Z, MIZUTANI K, SAWAI H. Chaos and multiple periods in an unsymmetrical spring and damping system with clearance [J]. Journal of Sound and Vibration, 2002, 250(2): 229–245. DOI: 10.1006/jsvi.2001.3920.
    [24] 高淑英. 振动力学 [M]. 2版. 北京: 中国铁道出版社, 2016: 11–12.
    [25] COFFEY C S, DEVOST V F. Impact testing of explosives and propellants [J]. Propellants, Explosives, Pyrotechnics, 1995, 20(3): 105–115. DOI: 10.1002/prep.19950200302.
    [26] BAKER P J. Drop-weight impact initiation of ammonium perchlorate composite solid rocket propellants [D]. Nashville: Vanderbilt University, 1994: 43.
    [27] 王金柱. 数值计算方法 [M]. 西安: 西北工业大学出版社, 2011: 182–183.
    [28] 姚熊亮. 结构动力学 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2007: 60–62.
    [29] 陈鹏, 屈可朋, 李亮亮, 等. PBX炸药剪切流动点火性能的实验研究 [J]. 火炸药学报, 2020, 43(1): 69–73. DOI: 10.14077/j.issn.1007-7812.201901003.

    CHEN P, QU K P, LI L L, et al. Experimental study on shear-flow ignition performance of PBX explosive [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 69–73. DOI: 10.14077/j.issn.1007-7812.201901003.
    [30] 杨昆, 吴艳青, 金朋刚, 等. 典型压装与浇注PBX炸药缝隙挤压损伤-点火响应 [J]. 含能材料, 2020, 28(10): 975–983. DOI: 10.11943/CJEM2020170.

    YANG K, WU Y Q, JIN P G, et al. Damage-ignition simulation for typical pressed and casted PBX under crack-extruded loading [J]. Chinese Journal of Energetic Materials, 2020, 28(10): 975–983. DOI: 10.11943/CJEM2020170.
    [31] HUGHES C T, REAUGH J E, CURTIS J P, et al. Explosive response to low speed spigot Impact [C]//Proceedings of the 38th International Pyrotechnics Seminar. Denver, Colorado, USA: LLNL, 2012.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  47
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 录用日期:  2024-04-28
  • 修回日期:  2024-02-28
  • 网络出版日期:  2024-05-09
  • 刊出日期:  2024-06-18

目录

    /

    返回文章
    返回