Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

多脉冲加载下PBX装药的应力放大效应

何杨 胡秋实 仲苏洋 廖深飞 李涛 傅华

颜秉健, 张博, 高远, 吕树光. 气相爆轰波近失效状态的传播模式[J]. 爆炸与冲击, 2018, 38(6): 1435-1440. doi: 10.11883/bzycj-2017-0167
引用本文: 何杨, 胡秋实, 仲苏洋, 廖深飞, 李涛, 傅华. 多脉冲加载下PBX装药的应力放大效应[J]. 爆炸与冲击, 2024, 44(6): 062301. doi: 10.11883/bzycj-2023-0267
YAN Bingjian, ZHANG Bo, GAO Yuan, LYU Shuguang. Investigation of the propagation modes for gaseous detonation at near-limit condition[J]. Explosion And Shock Waves, 2018, 38(6): 1435-1440. doi: 10.11883/bzycj-2017-0167
Citation: HE Yang, HU Qiushi, ZHONG Suyang, LIAO Shenfei, LI Tao, FU Hua. Stress amplification effect of PBX charge under multi-pulse loading[J]. Explosion And Shock Waves, 2024, 44(6): 062301. doi: 10.11883/bzycj-2023-0267

多脉冲加载下PBX装药的应力放大效应

doi: 10.11883/bzycj-2023-0267
基金项目: 中国工程物理研究院院长基金(YZJJZL2023014)
详细信息
    作者简介:

    何 杨(1996- ),女,硕士,研究实习员,heyang0820@163.com

    通讯作者:

    胡秋实(1984- ),男,博士,助理研究员,qiushihu@126.com

  • 中图分类号: O389

Stress amplification effect of PBX charge under multi-pulse loading

  • 摘要: 针对弹体侵彻过程中装药常常受到多脉冲载荷作用的问题,提出了一种装药多脉冲加载装置,研究了多脉冲加载下装药的应力放大效应。基于集中质量法建立了多脉冲加载装置的等效弹簧模型,对产生应力放大的条件进行了探讨。结果表明,多脉冲载荷频率与装药固有频率匹配时系统发生共振,装药产生响应放大,放大倍数随结构间隙宽度的增加而降低。装药多脉冲加载下存在一个时间区间,撞击加载的发生时刻落在该区间内时系统可产生放大效果。对高聚物黏结炸药 (polymer bonded explosive, PBX) 模拟材料,实现了实验室条件下应力幅值百兆帕、脉冲间隔毫秒级、脉冲次数3次且幅值逐渐放大的多脉冲载荷加载。
  • 图  1  装药多脉冲加载装置

    Figure  1.  Multi-pulse loading device for charge

    图  2  嵌套子弹截面参数

    Figure  2.  Cross-sectional parameters of nested projectile

    图  3  多脉冲加载装置等效弹簧模型

    Figure  3.  Equivalent spring model of multi-pulse loading device

    图  4  不同间隙宽度下系统幅-频响应曲线

    Figure  4.  Amplitude-frequency response curves with different gap width

    图  5  系统幅-频响应曲线峰值随阻尼、间隙的变化规律

    Figure  5.  Variation of peak value of amplitude-frequency response curves with damping coefficient and gap width

    图  6  构造的多脉冲载荷及等效弹簧系统位移响应情况

    Figure  6.  Constructed multi-pulse load and displacement response of equivalent spring system

    图  7  三脉冲载荷的傅里叶频谱

    Figure  7.  Fourier spectrum of three-pulse load

    图  8  多脉冲加载装置有限元模型

    Figure  8.  Finite element model of multi-pulse loading device

    图  9  不同∆L1下样品的应力时程曲线

    Figure  9.  Stress time history curves of samples under different ∆L1

    图  10  不同∆L1下T形传力杆的位移和中层子弹头部的应力

    Figure  10.  Displacement of T-shaped transmission bar and stress of middle projectile head under different ∆L1

    图  11  样品应力最优放大效果

    Figure  11.  Optimal amplification effect of sample stress

    图  12  T形传力杆位移和中层、外层子弹头部应力

    Figure  12.  Displacement of T-shaped transmission bar and stress in middle and outer projectile head

    图  13  多脉冲加载实验装置示意图

    Figure  13.  Schematic diagram of multi-pulse loading experimental device

    图  14  实验装置实物

    Figure  14.  Physical diagram of experimental device

    图  15  样品压力-时间历程实验结果

    Figure  15.  Experimental results of pressure-time history of samples

    图  16  子弹、限位块和T形传力杆相对位置高速摄影图片

    Figure  16.  High-speed photographic picture of the relative position of projectiles, limiting block and T-shaped transmission bar

    表  1  实验结果

    Table  1.   Experimental results

    编号 样品 规格尺寸/mm 子弹速度/(m·s−1) 放大效应
    1 聚四氟乙烯 20×20 17 放大
    2 聚四氟乙烯 20×20 17 放大
    3 聚四氟乙烯+PBX-3 20×16+20×4 17 放大
    4 聚四氟乙烯 20×20 21 不放大
    5 聚四氟乙烯+PBX-3 20×16+20×4 21 不放大
    下载: 导出CSV
  • [1] 高金霞, 赵卫刚, 郑腾. 侵彻战斗部装药抗过载技术研究 [J]. 火工品, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.

    GAO J X, ZHAO W G, ZHENG T. Study on the anti-overloading technique for penetrating warhead charge [J]. Initiators & Pyrotechnics, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.
    [2] 张萌昭, 周涛, 郭洪福, 等. 侵彻多层间隔靶板装药损伤特性研究 [J]. 兵器装备工程学报, 2021, 42(12): 92–97. DOI: 10.11809/bqzbgcxb2021.12.013.

    ZHANG M Z, ZHOU T, GUO H F, et al. Experimental study of charge damage in multi-layer target penetration process [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 92–97. DOI: 10.11809/bqzbgcxb2021.12.013.
    [3] 成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004.

    CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single-or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004.
    [4] 张琪林, 段卓平, 孟凡星, 等. 浇注炸药PBX-1侵彻安定性试验与数值模拟 [J]. 含能材料, 2021, 29(2): 107–113. DOI: 10.11943/CJEM2020203.

    ZHANG Q L, DUAN Z P, MENG F X, et al. Experiments and numerical simulations of penetration stability of cast charge PBX-1 [J]. Chinese Journal of Energetic Materials, 2021, 29(2): 107–113. DOI: 10.11943/CJEM2020203.
    [5] LI X, LIU Y Z, SUN Y. Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration [J]. Polymers, 2020, 12(6): 1342. DOI: 10.3390/polym12061342.
    [6] LEFRANCIOS A, LAMBERT P, CHESNET P, et al. Microstructural analysis of HE submitted to penetration experiments [C]//Proceedings of the 31st International Pyrotechnics Seminar. Fort Collins, Colorado, USA: IPS USA Seminar, 2004: 687–705.
    [7] 李晓. 侵彻过程中PBX装药的损伤与点火机制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020: 93–98.
    [8] 张馨予, 吴艳青, 黄风雷. PBX装药弹体侵彻混凝土薄板的数值模拟 [J]. 含能材料, 2018, 26(1): 101–108. DOI: 10.11943/j.issn.1006-9941.2018.01.013.

    ZHANG X Y, WU Y Q, HUANG F L. Numerical simulation on the dynamic damage of PBX charges filled in projectiles during penetrating thin concrete targets [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 101–108. DOI: 10.11943/j.issn.1006-9941.2018.01.013.
    [9] 白晨, 杨昆, 吴艳青, 等. 不同类型装药侵彻安全性数值模拟 [J]. 高压物理学报, 2021, 35(6): 065101. DOI: 10.11858/gywlxb.20210754.

    BAI C, YANG K, WU Y Q, et al. Numerical simulation of penetration safety of different types of charges [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 065101. DOI: 10.11858/gywlxb.20210754.
    [10] LUO H Y, CHEN W N W, RAJENDRAN A W. Dynamic compressive response of damaged and interlocked SiC-N ceramics [J]. Journal of the American Ceramic Society, 2006, 89(1): 266–273. DOI: 10.1111/j.1551-2916.2005.00688.x.
    [11] NIE X, CHEN W. High-rate progressive failure of borosilicate glass under mechanical confinement at high temperatures [J]. Experimental Mechanics, 2013, 53(1): 67–75. DOI: 10.1007/s11340-012-9635-z.
    [12] XIA K, CHEN R, HUANG S, et al. Controlled multipulse loading with a stuffed striker in classical split Hopkinson pressure bar testing [J]. Review of Scientific Instruments, 2008, 79(5): 053906. DOI: 10.1063/1.2928810.
    [13] 李亮亮, 屈可朋, 沈飞, 等. 基于霍普金森压杆的RDX基含铝炸药装药双脉冲加载实验 [J]. 火炸药学报, 2018, 41(1): 52–56. DOI: 10.14077/j.issn.1007-7812.2018.01.010.

    LI L L, QU K P, SHEN F, et al. Double-pulse loading experiment of RDX based aluminized explosive charge based on Hopkinson pressure bar [J]. Chinese Journal of Explosives & Propellants, 2018, 41(1): 52–56. DOI: 10.14077/j.issn.1007-7812.2018.01.010.
    [14] 聂少云, 薛鹏伊, 代晓淦. 模拟多层穿靶过程装药安全性评价方法 [J]. 火炸药学报, 2020, 43(5): 537–542. DOI: 10.14077/j.issn.1007-7812.201907015.

    NIE S Y, XUE P Y, DAI X G. Method of evaluating the safety of charging in a multi-layer penetration process [J]. Chinese Journal of Explosives & Propellants, 2020, 43(5): 537–542. DOI: 10.14077/j.issn.1007-7812.201907015.
    [15] 李亮亮, 孙兴昀, 付改侠, 等. 两次脉冲加载条件下炸药装药的安全性实验技术 [J]. 爆破器材, 2022, 51(2): 31–34. DOI: 10.3969/j.issn.1001-8352.2022.02.005.

    LI L L, SUN X Y, FU G X, et al. Experimental technology of safety of explosive charge under two pulse loading conditions [J]. Explosive Materials, 2022, 51(2): 31–34. DOI: 10.3969/j.issn.1001-8352.2022.02.005.
    [16] CHIDESTER S K, TRAVER C M, DEPIERO A H, et al. Single and multiple impact ignition of new and aged high explosives in the steven impact test [C]//Shock Compression of Condensed Matter-1999. Snowbird, Utah, USA: AIP Conference Proceedings, 2000: 663–666. DOI: 10.1063/1.1303560.
    [17] HUANG W K, CHEN G X, HU M B, et al. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch [J]. Review of Scientific Instruments, 2019, 90(2): 025110. DOI: 10.1063/1.5077051.
    [18] 李慧乐, 夏禾, 郭薇薇. 移动荷载作用下简支梁共振与消振机理研究 [J]. 工程力学, 2013, 30(7): 47–54. DOI: 10.6052/j.issn.1000-4750.2012.03.0218.

    LI H L, XIA H, GUO W W. Study on mechanism of resonance and vibration cancellation for simply-supported beam under moving loads [J]. Engineering Mechanics, 2013, 30(7): 47–54. DOI: 10.6052/j.issn.1000-4750.2012.03.0218.
    [19] 时瑾, 姚忠达, 王英杰. 二轴列车行经序列等跨桥时车辆共振响应分析 [J]. 振动与冲击, 2019, 38(5): 237–258. DOI: 10.13465/j.cnki.jvs.2019.05.034.

    SHI J, YAO Z D, WANG Y J. Resonance responses of vehicle during a two-axle train passing through sequential equal-span bridges [J]. Journal of Vibration and Shock, 2019, 38(5): 237–258. DOI: 10.13465/j.cnki.jvs.2019.05.034.
    [20] 王涛, 刘德贵, 黄辉. 大跨度铁路斜拉桥全桥索-梁相关振动研究 [J]. 振动与冲击, 2019, 38(17): 103–114. DOI: 10. 13465/j.cnki.jvs.2019.17.014. DOI: 10.13465/j.cnki.jvs.2019.17.014.

    WANG T, LIU D G, HUANG H. Cable-beam related vibration of a long span railway cable-stayed bridge [J]. Journal of Vibration and Shock, 2019, 38(17): 103–114. DOI: 10.13465/j.cnki.jvs.2019.17.014.
    [21] 卢绪祥, 刘正强, 黄树红, 等. 含间隙碰撞振动系统的非线性振动特性 [J]. 动力工程学报, 2012, 32(5): 388–393. DOI: 10.3969/j.issn.1674-7607.2012.05.009.

    LU X X, LIU Z Q, HUANG S H, et al. Nonlinear vibration characteristics of a vibro-impact system with clearance [J]. Journal of Chinese Society of Power Engineering, 2012, 32(5): 388–393. DOI: 10.3969/j.issn.1674-7607.2012.05.009.
    [22] 刘延柱. 振动力学 [M]. 3版. 北京: 高等教育出版社, 1998: 239–246.
    [23] HOSSAIN M Z, MIZUTANI K, SAWAI H. Chaos and multiple periods in an unsymmetrical spring and damping system with clearance [J]. Journal of Sound and Vibration, 2002, 250(2): 229–245. DOI: 10.1006/jsvi.2001.3920.
    [24] 高淑英. 振动力学 [M]. 2版. 北京: 中国铁道出版社, 2016: 11–12.
    [25] COFFEY C S, DEVOST V F. Impact testing of explosives and propellants [J]. Propellants, Explosives, Pyrotechnics, 1995, 20(3): 105–115. DOI: 10.1002/prep.19950200302.
    [26] BAKER P J. Drop-weight impact initiation of ammonium perchlorate composite solid rocket propellants [D]. Nashville: Vanderbilt University, 1994: 43.
    [27] 王金柱. 数值计算方法 [M]. 西安: 西北工业大学出版社, 2011: 182–183.
    [28] 姚熊亮. 结构动力学 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2007: 60–62.
    [29] 陈鹏, 屈可朋, 李亮亮, 等. PBX炸药剪切流动点火性能的实验研究 [J]. 火炸药学报, 2020, 43(1): 69–73. DOI: 10.14077/j.issn.1007-7812.201901003.

    CHEN P, QU K P, LI L L, et al. Experimental study on shear-flow ignition performance of PBX explosive [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 69–73. DOI: 10.14077/j.issn.1007-7812.201901003.
    [30] 杨昆, 吴艳青, 金朋刚, 等. 典型压装与浇注PBX炸药缝隙挤压损伤-点火响应 [J]. 含能材料, 2020, 28(10): 975–983. DOI: 10.11943/CJEM2020170.

    YANG K, WU Y Q, JIN P G, et al. Damage-ignition simulation for typical pressed and casted PBX under crack-extruded loading [J]. Chinese Journal of Energetic Materials, 2020, 28(10): 975–983. DOI: 10.11943/CJEM2020170.
    [31] HUGHES C T, REAUGH J E, CURTIS J P, et al. Explosive response to low speed spigot Impact [C]//Proceedings of the 38th International Pyrotechnics Seminar. Denver, Colorado, USA: LLNL, 2012.
  • 期刊类型引用(6)

    1. 赵焕娟,汪乐溪,张英华,林敏,周正青,蒋慧灵. 孔隙比对氢气爆轰波结构的定量影响. 工程热物理学报. 2024(01): 303-309 . 百度学术
    2. 周以宁,赵焕娟,徐向宇,林敏,董士铭. 内管扰动对氢气爆轰波传播影响的实验研究. 工程热物理学报. 2022(12): 3402-3413 . 百度学术
    3. 施伟,关亮,王子模,蒋榕培,徐森. NOFBx推进剂的火焰传播特性试验及分析. 火箭推进. 2021(05): 92-98 . 百度学术
    4. 韩文虎,张博,王成. 气相爆轰波起爆与传播机理研究进展. 爆炸与冲击. 2021(12): 65-96 . 本站查看
    5. 牛淑贞,赵焕娟,张英华,严屹然,秦玄烨. 环管中甲烷-氧气预混气爆轰传播机理研究. 推进技术. 2020(07): 1536-1543 . 百度学术
    6. 武郁文,褚驰,翁春生,郑权. 孔板扰动对爆轰波胞格结构特性影响的实验研究. 爆炸与冲击. 2019(11): 15-23 . 本站查看

    其他类型引用(1)

  • 加载中
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
反射爆炸应力波作用下动静裂纹的贯通机理
周星源 等, 爆炸与冲击, 2025
基于高压气体驱动的爆炸波模拟激波管冲击波衰减历程控制方法
程帅 等, 爆炸与冲击, 2024
氢气-甲烷-乙醇混合燃料的爆炸压力特性
郭宏展 等, 爆炸与冲击, 2023
岩石爆破损伤演化与动力响应的空孔效应
李涛 等, 高压物理学报, 2025
阻塞弯管中爆轰波传播行为
刘佳伟 等, 高压物理学报, 2025
圆柱形障碍物对2h2+o2+nar预混气体的再起爆实验研究
刘虎 等, 高压物理学报, 2023
Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: a review
Yuan, Shuang et al., JOURNAL OF ENERGY STORAGE, 2023
Peridynamics simulating of dynamics crack propagation in rock mass under blasting load
SIMULATION MODELLING PRACTICE AND THEORY
Dynamic response mechanism of thin-walled plate under confined and unconfined blast loads
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024
Powered by
图(16) / 表(1)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  80
  • PDF下载量:  107
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-08-02
  • 录用日期:  2024-04-28
  • 修回日期:  2024-02-28
  • 网络出版日期:  2024-05-09
  • 刊出日期:  2024-06-18

目录

    /

    返回文章
    返回