A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure
-
摘要: 为了研究蜂窝夹芯板双层结构在活性弹超高速撞击下的损伤特性,制备了PTFE(polytetrafluoroethylene)/Al/Cu柱形活性弹丸,利用二级轻气炮对蜂窝夹芯板双层结构靶开展超高速撞击实验,采用超高速摄像机记录了活性弹撞击蜂窝板的碎片云演化过程,分析了蜂窝板的穿孔特性和结构内部各组件的损伤特征;数值模拟了撞击过程,分析了活性弹丸的超高速侵爆效应,获得了碎片云的膨胀运动规律,揭示了活性弹丸冲击-爆轰耦合效应对靶板的损伤机理。结果表明:活性弹丸在蜂窝板上形成较小的入射孔和较大的出射孔,出射孔直径随着撞击速度的提高而增大;蜂窝夹芯板入射孔、出射孔和蜂窝芯穿孔直径随着活性弹体质量的增加而增大,入射孔直径不受蜂窝板厚度和蜂窝芯胞格直径的影响,出射孔和蜂窝芯穿孔直径随着蜂窝板厚度的增大先增大后减小,随着蜂窝芯胞格直径的增大而增大;活性弹产生具有较高膨胀速度的高温碎片云,其膨胀速度随着撞击速度的提高而提高。活性弹的冲击-爆轰耦合效应增大了结构内部组件的毁伤面积。在2~6 km/s速度范围内,活性弹在蜂窝板上形成的出射孔直径约为铝合金弹的1.3~1.8倍,碎片云的膨胀速度是铝合金弹的1.8~3.2倍。相较于铝合金弹丸,活性弹丸增大了蜂窝夹芯板双层结构内部和后板的毁伤面积,提高了毁伤效能。Abstract: With the prepared reactive projectiles, and the two-stage light gas gun was used to conduct hypervelocity impact experiments on the honeycomb double-layer structure target. A high-speed camera was used to record the impact process, so the evolution process of debris clouds during the impact of the reactive projectile on honeycomb panels was obtained. By recycling the targets, the perforation characteristics of the honeycomb plate were analyzed, and the damage characteristics of various components inside the structure were found. Numerical simulations of impact process are carried out, and the hypervelocity penetration effect of reactive projectiles is analyzed according to the experimental and numerical simulation results. The expansion motion law of debris clouds is obtained, revealing the damage mechanism of the coupling effect of impact-detonation of reactive projectiles on the target. The results indicate that the impact initiation characteristic of reactive projectile can form smaller inlet and larger outlet holes on honeycomb panel, and the diameter of the outlet perforation increases with the increase of impact velocity. Under the impact of reactive projectile, the perforation diameters of honeycomb sandwich panel for the entry perforation, exit perforation and honeycomb core perforation all increase with the increase of reactive projectile mass. The perforation diameters are not affected by the thickness of honeycomb sandwich panel. The perforation diameter and honeycomb core perforation diameter first increase and then decrease with the increase of honeycomb panel thickness. The entry perforation does not change with the increase of honeycomb core cell diameter. The exit perforation diameter and honeycomb core perforation increase with the increase of honeycomb core cell diameter. Reactive projectile can generate high-temperature debris cloud with higher expansion velocity, and the expansion velocity increases with the increase of impact velocity. The coupling effect of impact-detonation of reactive projectile leads to increase of the damage area on the internal components of the target. In the velocity range of 2–6 km/s, the diameter of the perforation hole formed by the reactive projectile on the honeycomb sandwich panel is about 1.3–1.8 times that of the aluminum alloy projectile, and the expansion velocity of the debris cloud is 1.8–3.2 times that of the aluminum alloy projectile. Compared with the aluminum alloy projectile, the reactive projectile increases the damage area of the debris cloud on the inner and rear plates of the honeycomb sandwich panel double-layer structure, and improves the damage efficiency.
-
表 1 实验结果
Table 1. Experimental results
编号 弹体 靶板 材料 尺寸/mm 速度/(km·s−1) 电子组件位置 损伤 蜂窝板 后板 电子组件 电缆网组件 1 PTFE/Al/Cu $ \varnothing$7×7 3.06 蜂窝板背面 穿孔 凹陷 穿孔+烧蚀 烧蚀 2 PTFE/Al/Cu $\varnothing $7×7 3.13 侧面板 穿孔 凹陷 烧蚀 断裂+烧蚀 3 PTFE/Al/Cu $\varnothing $7×7 3.10 后板正面 穿孔 凹陷 穿孔+烧蚀 断裂+烧蚀 材料 ρ/(g·cm−3) G0/GPa Y0/MPa Ymax/MPa β n γ0 C1/(km·s−1) S1 cV/(J·kg−1·K−1) Al2024 2.78 28.6 260 760 310 0.185 2.18 5.328 1.338 863 Al5052 2.68 27.6 290 680 125 0.1 1.97 5.240 1.34 875 $ \rho $/(g$ \cdot $cm−3) A/MPa B/MPa n I/μs−1 b c d y 2.7 61.3 128.1 0.574 44 0.22 0.222 0.666 1.6 表 4 数值模拟和实验2结果的对比
Table 4. Comparison of numerical simulation and Exp. 2 results
夹芯板入射孔径 夹芯板出射孔径 实验2/mm 模拟/mm 误差/% 实验2/mm 模拟/mm 误差/% 10.1 10.8 6.7 66.5 62.4 6.1 碎片云膨胀速度 碎片云头部速度 实验2/(km·s−1) 模拟/(km·s−1) 误差/% 实验2/(km·s−1) 模拟/(km·s−1) 误差/% 1.61 1.68 4.3 2.53 2.76 9.1 -
[1] MOCK W JR, HOLT W H. Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders [J]. AIP Conference Proceedings, 2006, 845(1): 1097–1100. DOI: 10.1063/1.2263514. [2] ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111(12): 2129–1156. DOI: 10.1063/1.4729048. [3] REN S Y, ZHANG Q M, WU Q, et al. Influence of impact-induced reaction characteristics of reactive composites on hypervelocity impact resistance [J]. Materials & Design, 2020, 192: 108722. DOI: 10.1016/j.matdes.2020.108722. [4] 肖艳文, 徐峰悦, 余庆波, 等. 类钢密度活性材料弹丸撞击铝靶行为实验研究 [J]. 兵工学报, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.XIAO Y W, XU F Y, YU Q B, et al. Experimental research on behavior of active material projectile with steel-like density impacting aluminum target [J]. Acta Armamentarii, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007. [5] NIELSON D B, TRUITT R M, RASMUSSEN N. Low temperature, extrudable, high density reactive materials: US-6962634-B2 [P]. 2005-11-08. [6] ZEMAN S. New aspects of initiation reactivities of energetic materials demonstrated on nitramines [J]. Journal of Hazardous Materials, 2006, 132(2/3): 155–164. [7] XU F Y, ZHENG Y F, YU Q B, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate [J]. International Journal of Impact Engineering, 2016, 95: 125–132. DOI: 10.1016/j.ijimpeng.2016.05.007. [8] XU F Y, LIU S B, ZHENG Y F, et al. Quasi-static compression properties and failure of PTFE/Al/W reactive materials [J]. Advanced Engineering Materials, 2017, 19(1): 1600350. DOI: 10.1002/adem.201600350. [9] XU F Y, YU Q B, ZHENG Y F, et al. Damage effects of double-spaced aluminum plates by reactive material projectile impact [J]. International Journal of Impact Engineering, 2017, 104: 13–20. DOI: 10.1016/j.ijimpeng.2017.01.023. [10] 谢剑文, 李沛豫, 王海福, 等. 活性破片撞击油箱毁伤行为与机理 [J]. 兵工学报, 2022, 43(7): 1565–1577. DOI: 10.12382/bgxb.2021.0384.XIE J W, LI P Y, WANG H F, et al. Damage behaviors and mechanisms of reactive fragments impacting fuel tanks [J]. Acta Armamentarii, 2022, 43(7): 1565–1577. DOI: 10.12382/bgxb.2021.0384. [11] 肖艳文, 徐峰悦, 郑元枫, 等. 活性材料弹丸碰撞油箱引燃效应实验研究 [J]. 北京理工大学学报, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002.XIAO Y W, XU F Y, ZHENG Y F, et al. Experimental study on ignition effects of fuel-filled tank impacted by reactive material projectile [J]. Transactions of Beijing Institute of Technology, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002. [12] 葛超, 余庆波, 卢冠成, 等. 活性芯体子弹对柴油油箱引燃效应及机理研究 [J]. 北京理工大学学报, 2020, 40(10): 1072–1080, 1087. DOI: 10.15918/j.tbit1001-0645.2019.206.GE C, YU Q B, LU G C, et al. Igniting effects and mechanism of diesel oil tank by projectile with reactive core [J]. Transactions of Beijing Institute of Technology, 2020, 40(10): 1072–1080, 1087. DOI: 10.15918/j.tbit1001-0645.2019.206. [13] 阳世清, 徐松林, 张彤. PTFE/Al反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 39–42, 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.YANG S Q, XU S L, ZHANG T. Preparation and performance of PTEF/Al reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 39–42, 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009. [14] 叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展 [J]. 宇航材料工艺, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials [J]. Aerospace Materials & Technology, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003. [15] RAFTENBERG M N, MOCK W JR, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35(12): 1735–1744. DOI: 10.1016/j.ijimpeng.2008.07.041. [16] WANG H F, GENG B Q, GUO H G, et al. The effect of sintering and cooling process on geometry distortion and mechanical properties transition of PTFE/Al reactive materials [J]. Defence Technology, 2020, 16(3): 720–730. DOI: 10.1016/j.dt.2019.10.006. [17] FENG B, LI Y C, WU S Z, et al. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors [J]. Materials & Design, 2016, 108: 411–417. DOI: 10.1016/j.matdes.2016.06.125. [18] WANG H X, FANG X, FENG B, et al. Influence of temperature on the mechanical properties and reactive behavior of Al-PTFE under quasi-static compression [J]. Polymers, 2018, 10(1): 56. DOI: 10.3390/polym10010056. [19] 任耶平, 刘睿, 陈鹏万, 等. Al/PTFE活性材料冲击载荷作用下响应特性研究 [J]. 爆炸与冲击, 2022, 42(6): 063103. DOI: 10.11883/bzycj-2021-0397.REN Y P, LIU R, CHEN P W, et al. A study of the response characteristics of Al/PTFE reactive materials under shock loading [J]. Explosion and Shock Waves, 2022, 42(6): 063103. DOI: 10.11883/bzycj-2021-0397. [20] 于钟深, 方向, 高振儒, 等. TiH2含量对Al/PTFE准静态压缩力学性能和反应特性的影响 [J]. 含能材料, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.YU Z S, FANG X, GAO Z R, et al. Effect of TiH2 content on mechanical properties and reaction characteristics of Al/PTFE under quasi-static compression [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387. [21] 杜宁, 张先锋, 熊玮, 等. 爆炸驱动典型活性材料能量释放特性研究 [J]. 爆炸与冲击, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239.DU N, ZHANG X F, XIONG W, et al. Energy-release characteristics of typical reactive materials under explosive loading [J]. Explosion and Shock Waves, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239. [22] 汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展 [J]. 爆炸与冲击, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.WANG D W, REN K R, JIANG Z R, et al. Shock-induced energy release behaviors of reactive materials [J]. Explosion and Shock Waves, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337. [23] BENNETT L S, SORRELL F Y, SIMONSEN I K, et al. Ultrafast chemical reactions between nickel and aluminum powders during shock loading [J]. Applied Physics Letters, 1992, 61(5): 520–521. DOI: 10.1063/1.107874. [24] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281. [25] XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. The Journal of Physical Chemistry C, 2016, 120(43): 24551–24559. DOI: 10.1021/acs.jpcc.6b06530. [26] ÖZEN İ, ÇAVA K, GEDIKLI H, et al. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores [J]. Thin-Walled Structures, 2020, 156: 106989. DOI: 10.1016/j.tws.2020.106989. [27] KANG P, YOUN S K, LIM J H. Modification of the critical projectile diameter of honeycomb sandwich panel considering the channeling effect in hypervelocity impact [J]. Aerospace Science and Technology, 2013, 29(1): 413–425. DOI: 10.1016/j.ast.2013.04.011. [28] SIBEAUD J M, THAMIÉ L, PUILLET C. Hypervelocity impact on honeycomb target structures: experiments and modeling [J]. International Journal of Impact Engineering, 2008, 35(12): 1799–1807. DOI: 10.1016/j.ijimpeng.2008.07.037. [29] 刘昕, 邓勇军, 彭芸, 等. 球形弹丸超高速斜撞击薄板的碎片云和侵彻特征仿真分析 [J]. 航天器环境工程, 2021, 38(6): 615–624. DOI: 10.12126/see.2021.06.002.LIU X, DENG Y J, PENG Y, et al. Simulation analysis of the characteristics of debris cloud and perforation caused by oblique hypervelocity impact of spherical projectile on a thin plate [J]. Spacecraft Environment Engineering, 2021, 38(6): 615–624. DOI: 10.12126/see.2021.06.002. [30] LIU P, LIU Y, ZHANG X. Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2015, 77: 120–133. DOI: 10.1016/j.ijimpeng.2014.11.004.