脉冲载荷下加筋圆板的各向同性快速等效方法

焦重熙 钟巍 王霂 梅晰洁 邱信明

焦重熙, 钟巍, 王霂, 梅晰洁, 邱信明. 脉冲载荷下加筋圆板的各向同性快速等效方法[J]. 爆炸与冲击, 2024, 44(3): 031402. doi: 10.11883/bzycj-2023-0308
引用本文: 焦重熙, 钟巍, 王霂, 梅晰洁, 邱信明. 脉冲载荷下加筋圆板的各向同性快速等效方法[J]. 爆炸与冲击, 2024, 44(3): 031402. doi: 10.11883/bzycj-2023-0308
JIAO Chongxi, ZHONG Wei, WANG Mu, MEI Xijie, QIU Xinming. A fast equivalent-isotropic-plate model for stiffened circular plates under pulse loading[J]. Explosion And Shock Waves, 2024, 44(3): 031402. doi: 10.11883/bzycj-2023-0308
Citation: JIAO Chongxi, ZHONG Wei, WANG Mu, MEI Xijie, QIU Xinming. A fast equivalent-isotropic-plate model for stiffened circular plates under pulse loading[J]. Explosion And Shock Waves, 2024, 44(3): 031402. doi: 10.11883/bzycj-2023-0308

脉冲载荷下加筋圆板的各向同性快速等效方法

doi: 10.11883/bzycj-2023-0308
基金项目: 国家自然科学基金(12272208,12202493)
详细信息
    作者简介:

    焦重熙(1999- ),男,博士研究生,jcx21@mails.tsinghua.edu.cn

    通讯作者:

    邱信明(1974- ),女,博士,教授,博士生导师,qxm@tsinghua.edu.cn

  • 中图分类号: O383.2

A fast equivalent-isotropic-plate model for stiffened circular plates under pulse loading

  • 摘要: 加筋板在爆炸与冲击防护中应用广泛,而其动力响应的快速求解一直是工程中关注的重点。对于径向均匀加筋的圆板,基于刚度叠加思想,提出了一种将其等效为各向同性平板的方法,用于分析其在脉冲载荷下弹性阶段的动力响应。结合理论推导与数值方法,显式地给出了简洁的等效平板厚度公式。经验证,提出的等效方法建立了加筋圆板与均质圆板间的内在联系,适用于多种加筋尺寸、材料及载荷形式。等效圆板与加筋圆板的最大挠度偏差不超过6%,低阶振动频率偏差不超过10%。相比于直接对加筋圆板进行计算,等效分析方法大大提高了求解效率,且保证了很高的计算精度,在冲击响应预测和结构优化等工程应用中具有重要意义。
  • 图  1  十字形加筋圆板几何尺寸

    Figure  1.  Geometry illustration of cross-stiffened circular plate

    图  2  加强肋方向s1s2的坐标变换

    Figure  2.  The coordinate transformation of the directions s1 and s2 of the stiffeners

    图  3  LS-DYNA中十字形加筋圆板的壳单元网格划分

    Figure  3.  The mesh of cross-stiffened circular plate using shell element in LS-DYNA

    图  4  不同厚度圆板在线性衰减脉冲(压力峰值50 kPa,衰减时间2 ms)作用下的最大响应挠度及拟合曲线

    Figure  4.  The maximum deflections and fitting curve of circular flat plates with different thicknesses under linear decaying pulse with the peak pressure of 50 kPa and the decay time of 2 ms

    图  5  3种不同十字形加筋圆板的$h_{\mathrm{s}}^2 $$h_{\mathrm{e}}^2 $的关系

    Figure  5.  The relations between $h_{\mathrm{s}}^2 $ and $h_{\mathrm{e}}^2 $ for three different cross-stiffened circular plates

    图  6  不同nβ设置下加筋圆板的等效参数K

    Figure  6.  The equivalent parameter K of the stiffened circular plates with different n and β

    图  7  等效参数K(n, β)拟合函数图

    Figure  7.  The fitting function graphs of equivalent parameter K(n, β)

    图  8  3种不同加筋圆板及其等效平板、等质量修正板、等质量分布修正板的中心挠度-时间曲线对比

    Figure  8.  Comparisons of the central deflection-time curves among three different stiffened circular plates and the corresponding equivalent plates, equal mass revised plates, equal mass distribution revised plates

    图  9  不同时刻n4β0.07加筋圆板(左)与对应等效平板(右)的挠度分布云图

    Figure  9.  The deflection contour maps of the stiffened circular plate n4β0.07 (left) and the corresponding equivalent plate (right) at different times

    图  10  不同nβ设置下加筋圆板及其等效平板(采用式(16)或式(19))在同等线性衰减脉冲载荷下的响应情况对比

    Figure  10.  Comparisons of the dynamic response of the stiffened circular plates and the corresponding equivalent plates (by Eq.(16) or Eq. (19)) with different n and β under the same linear decaying pulse

    图  11  本文等效方法与Timoshenko等[13]提出的EPM对n=3, 4, 5加筋圆板的最大挠度等效情况对比

    Figure  11.  Comparison of the maximum deflections of the stiffened circular plate (n=3, 4, 5) using current equivalent method and the EPM proposed by Timoshenko, et al[13]

    图  12  不同线性衰减脉冲压力下的n4β0.07加筋圆板与对应等效平板的最大挠度

    Figure  12.  The maximum deflections of the stiffened circular plate n4β0.07 and the corresponding equivalent plate under the triangle decaying pulse with different pressure

    图  13  矩形脉冲(RP)、线性衰减脉冲(LDP)和等腰三角脉冲(ITP)下的n4β0.07加筋圆板与对应等效平板的中心挠度-时间曲线

    Figure  13.  The central deflection-time curves of the stiffened circular plate n4β0.07 and the corresponding equivalent plate under the rectangle pulse (RP), linear decaying pulse (LDP), and isosceles triangular pulse (ITP)

    图  14  铝合金、镁合金、合金钢n4β0.07加筋圆板与对应等效平板的中心挠度-时间曲线

    Figure  14.  The central deflection-time curves of the stiffened circular plate n4β0.07 and the corresponding equivalent plate made of different materials: aluminum alloy, magnesium alloy and alloy steel

  • [1] TROITSKY M S. Stiffened plates: bending, stability, and vibrations [M]. Amsterdam: Elsevier, 1976.
    [2] SZILARD R. Theories and applications of plate analysis: classical, numerical, and engineering methods [M]. Hoboken: John Wiley & Sons, 2004.
    [3] KIM D K, LIM H L, YU S Y. A technical review on ultimate strength prediction of stiffened panels in axial compression [J]. Ocean Engineering, 2018, 170: 392–406. DOI: 10.1016/j.oceaneng.2018.10.022.
    [4] KARPOV V V, SEMENOV A A. Refined model of stiffened shells [J]. International Journal of Solids and Structures, 2020, 199: 43–56. DOI: 10.1016/j.ijsolstr.2020.03.019.
    [5] BALKAN D, DEMIR Ö, ARIKOĞLU A. Dynamic analysis of a stiffened composite plate under blast load: a new model and experimental validation [J]. International Journal of Impact Engineering, 2020, 143: 103591. DOI: 10.1016/j.ijimpeng.2020.103591.
    [6] 张涛, 刘土光, 赵耀, 等. 加筋板弹性大挠度的冲击响应分析 [J]. 爆炸与冲击, 2002, 22(4): 301–307. DOI: 10.3321/j.issn:1001-1455.2002.04.003.

    ZHANG T, LIU T G, ZHAO Y, et al. Large deflection dynamic response of stiffened plates under lateral impact loading [J]. Explosion and Shock Waves, 2002, 22(4): 301–307. DOI: 10.3321/j.issn:1001-1455.2002.04.003.
    [7] ISLAM A, SHEIKH A H, BENNETT T, et al. An innovative modeling strategy for flexural response of fiber-reinforced stiffened composite structures [J]. Thin-Walled Structures, 2022, 172: 108929. DOI: 10.1016/j.tws.2022.108929.
    [8] YU H D, ZHAO Z J, YANG D, et al. A new composite plate/plate element for stiffened plate structures via absolute nodal coordinate formulation [J]. Composite Structures, 2020, 247: 112431. DOI: 10.1016/j.compstruct.2020.112431.
    [9] SHEN Y J, HE X C, CHEN W, et al. Meshless simulation and experimental study on forced vibration of rectangular stiffened plate [J]. Journal of Sound and Vibration, 2022, 518: 116602. DOI: 10.1016/j.jsv.2021.116602.
    [10] KARPOV V V, SEMENOV A A. Structural anisotropy method for shells with orthogonal stiffeners [J]. Structures, 2021, 34: 3206–3221. DOI: 10.1016/j.istruc.2021.09.027.
    [11] ZHANG B, CHEN H L, LI M, et al. Equivalent static load method for hierarchical stiffened composite panel subjected to blast loading [J]. Engineering Structures, 2018, 171: 569–582. DOI: 10.1016/j.engstruct.2018.05.107.
    [12] XIA Y, FRISWELL M I, SAAVEDRA FLORES E I. Equivalent models of corrugated panels [J]. International Journal of Solids and Structures, 2012, 49(13): 1453–1462. DOI: 10.1016/j.ijsolstr.2012.02.023.
    [13] TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. New York: McGraw-Hill, 1959.
    [14] BATTAGLIA G, DI MATTEO A, PIRROTTA A, et al. Dynamic response of equivalent orthotropic plate model for stiffened plate: numerical-experimental assessment [J]. Procedia Engineering, 2017, 199: 1423–1428. DOI: 10.1016/j.proeng.2017.09.387.
    [15] XING Y F, LIU B. New exact solutions for free vibrations of thin orthotropic rectangular plates [J]. Composite Structures, 2009, 89(4): 567–574. DOI: 10.1016/j.compstruct.2008.11.010.
    [16] FERTIS D G, MIJATOV M M. Equivalent systems for variable thickness plates [J]. Journal of Engineering Mechanics, 1989, 115(10): 2287–2300. DOI: 10.1061/(ASCE)0733-9399(1989)115:10(2287).
    [17] SEO J K, KIM B J, RYU H S, et al. Validation of the equivalent plate thickness approach for ultimate strength analysis of stiffened panels with non-uniform plate thickness [J]. Thin-Walled Structures, 2011, 49(6): 753–761. DOI: 10.1016/j.tws.2011.02.001.
    [18] HUANG X R, WANG M, FENG Y J, et al. Finite deformation analysis of the elastic circular plates under pressure loading [J]. Thin-Walled Structures, 2023, 188: 110864. DOI: 10.1016/j.tws.2023.110864.
  • 加载中
图(14)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  55
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-25
  • 修回日期:  2023-11-15
  • 网络出版日期:  2023-12-03
  • 刊出日期:  2024-03-14

目录

    /

    返回文章
    返回