An assessment method for ammunition damage effectiveness based on multiple rectangular cookie cutter function
-
摘要: 为了快速准确地评估弹药对目标的毁伤效能,提出了一种基于多矩形饼切函数的弹药毁伤效能评估方法。该方法采用梯形法则、分区等效的思想,可以较大程度地保留实际毁伤区域中毁伤概率值的分布规律,从而保证计算的准确度。通过算例分析,研究了弹药落角和投放精度对目标平均毁伤概率的影响,并与基于矩形饼切和卡尔顿毁伤函数方法的结果进行了比较。结果表明,在弹药落角范围为30°~75°及弹药投放精度(circular error probable, CEP)范围为5~50 m时,与矩形饼切毁伤函数相比,基于多矩形饼切毁伤函数的计算方法使毁伤效能计算精度最大提高了26.4%;同时,与卡尔顿毁伤函数相比,计算效率提高了518倍。Abstract: When assessing the damage effectiveness of blast-fragmentation ammunitions against ground targets, the traditional approach involves calculating the overall target damage probability based on component damage criteria. Typically, the shooting line tracing method is used to determine the specific location on the target where fragments from the munition hit. However, this computation process is time-consuming. Therefore, to rapidly and accurately evaluate the ammunition damage effectiveness on the target, this study proposes a method called the multiple rectangular cookie cutter damage function. This method adopts the concept of the trapezoidal rule and performs equivalent processing on different regions corresponding to different damage probability intervals based on the gradient of damage probability changes within the actual damage area. This method can effectively retain the distribution pattern of damage probability values in the practical damage area, thus ensuring the accuracy of the computations. When describing ammunition delivery accuracy, a two-dimensional normal distribution is commonly employed to simulate the impact point locations of projectiles. Therefore, when calculating the mean of damage probability of the ammunition on the target, integration operations on the normal distribution function are necessary. However, due to the absence of an analytical solution for integrating the normal distribution function, polynomial equations are introduced as substitutes to enhance computational efficiency. The effects of ammunition drop angle and accuracy on the mean of damage probability of the target were investigated through example analysis, and the results were compared with those of methods based on the rectangular cookie cutter and Carlton damage function. The results show that within the ammunition drop angle range from 30° to 75°, and the circular error probable (CEP) precision range from 5 m to 50 m, compared with the rectangular cookie cutter damage function, the calculation method based on the multiple rectangular cookie cutter damage function improves the accuracy of damage effectiveness calculation by up to 26.4%. At the same time, the computational efficiency is improved by a factor of 518 compared with the Carlton damage function.
-
Key words:
- damage effectiveness /
- damage function /
- trapezoidal rule /
- calculation accuracy
-
表 1 基于3种毁伤函数的计算时间
Table 1. Computational time consumption based on three damage functions
毁伤函数 计算时间/μs 卡尔顿毁伤函数 2174 矩形饼切毁伤函数 0.2 多矩形饼切毁伤函数 4.2 -
[1] 徐豫新, 蔡子雷, 吴巍, 等. 弹药毁伤效能评估技术研究现状与发展趋势 [J]. 北京理工大学学报, 2021, 41(6): 569–578. DOI: 10.15918/j.tbit1001-0645.2020.194.XU Y X, CAI Z L, WU W, et al. Current research and development of ammunition damage effect assessment technology [J]. Transactions of Beijing Institute of Technology, 2021, 41(6): 569–578. DOI: 10.15918/j.tbit1001-0645.2020.194. [2] 曾松林, 韩玉龙, 陈榕, 等. 一种评估航空炸弹对集群目标毁伤效能的新方法 [J]. 航空兵器, 2023, 30(1): 25–30. DOI: 10.12132/ISSN.1673-5048.2022.0037.ZENG S L, HAN Y L, CHEN R, et al. A new method to evaluate aerial bomb damage effectiveness hitting cluster targets [J]. Aero Weaponry, 2023, 30(1): 25–30. DOI: 10.12132/ISSN.1673-5048.2022.0037. [3] 徐文旭, 李召, 陆凡东. 基于状态空间的反坦克导弹毁伤效能精准评估方法 [J/OL]. 兵工学报[2023-08-23]. DOI: 10.12382/bgxb.2022.0686.XU W X, LI Z, LU F D. Accurate evaluation method of antitank missile damage effectiveness based on state space [J/OL]. Acta Armamentarii[2023-08-23]. DOI: 10.12382/bgxb.2022.0686. [4] 赵晓旭, 韩旭光, 吴浩, 等. 制导杀爆弹毁伤效能评估的应用研究 [J]. 北京理工大学学报, 2019, 39(6): 551–557. DOI: 10.15918/j.tbit1001-0645.2019.06.001.ZHAO X X, HAN X G, WU H, et al. Applied research on damage effectiveness evaluation of guided explosive bomb [J]. Transactions of Beijing Institute of Technology, 2019, 39(6): 551–557. DOI: 10.15918/j.tbit1001-0645.2019.06.001. [5] 田浩成, 卢芳云, 李志斌, 等. 基于改进毁伤矩阵的人员目标毁伤效能评估 [J]. 兵器装备工程学报, 2022, 43(7): 101–108. DOI: 10.11809/bqzbgcxb2022.07.015.TIAN H C, LU F Y, LI Z B, et al. Evaluation of damage effectiveness of personnel target based on improved damage matrix [J]. Journal of Ordnance Equipment Engineering, 2022, 43(7): 101–108. DOI: 10.11809/bqzbgcxb2022.07.015. [6] KATSEV I, EVLOGIEV S. Damage functions evaluation coherent to weapon target interaction [J]. Machines, Technologies, Materials, 2019, 13(3): 124–126. [7] DRIELS M R. Weaponeering: conventional weapon system effectiveness [M]. Reston: American Institute of Aeronautics and Astronautics, 2004. [8] CHUSILP P, CHARUBHUN W, NILUBOL O. Effects of the cookie cutter function shapes on Monte Carlo simulations of weapon effectiveness [C]//2014 Seventh IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA). Cau Giay: IEEE, 2014: 1–7. DOI: 10.1109/CISDA.2014.7035622. [9] ECKLER A R, BURR S A. Mathematical models of target coverage and missile allocation: DTIC: AD-A953517 [R]. Alexandria: Military Operations Research Society, 1972. [10] ANDERSON C M. Generalized weapon effectiveness modeling [D]. Monterey: Naval Postgraduate School, 2004. [11] MOON S H. Weapon effectiveness and the shapes of damage functions [J]. Defence Technology, 2021, 17(2): 617–632. DOI: 10.1016/j.dt.2020.04.009. [12] KLOPCIC J T. A comparison of damage functions for use in artillery effectiveness codes: DTIC_ADA222589 [R]. Maryland: Army Ballistic Research Laboratory, Aberdeen Proving Ground, 1990. [13] CHUSILP P, CHARUBHUN W, KOANANTACHAI P. Monte Carlo simulations of weapon effectiveness using Pk matrix and Carleton damage function [J]. International Journal of Applied Physics and Mathematics, 2014, 4(4): 280–285. DOI: 10.7763/IJAPM.2014.V4.299. [14] 李向东, 周兰伟, 纪杨子燚. 目标易损性评估及应用 [M]. 北京: 北京理工大学出版社, 2022: 372-373. [15] 丁贵鹏, 陶钢, 庞春桥, 等. 基于卡尔顿毁伤函数的杀伤榴弹效能评估模拟 [J]. 兵器装备工程学报, 2021, 42(8): 8–13. DOI: 10.11809/bqzbgcxb2021.08.002.DING G P, TAO G, PANG C Q, et al. Evaluation simulation of grenade effectiveness based on Carleton damage function [J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 8–13. DOI: 10.11809/bqzbgcxb2021.08.002. [16] WANG H Y, LABARIA G, MOTEN C, et al. Average damage caused by multiple weapons against an area target of normally distributed elements [J]. American Journal of Operations Research, 2017, 7(5): 289–306. DOI: 10.4236/ajor.2017.75022. [17] WANG H Y, MOTEN C, DRIELS M, et al. Explicit exact solution of damage probability for multiple weapons against a unitary target [J]. American Journal of Operations Research, 2016, 6(6): 450–467. DOI: 10.4236/ajor.2016.66042. [18] LEE J H, CHOI W J. Assessment of vulnerable area and naval ship’s vulnerability based on the Carleton damage function [J]. Journal of the Society of Naval Architects of Korea, 2018, 55(3): 274–280. DOI: 10.3744/SNAK.2018.55.3.274. [19] GALLAGHER M A, HORTA M C. Cyber joint munitions effectiveness manual (JMEM) [J]. American Intelligence Journal, 2013, 31(1): 73–81. [20] 宋谢恩, 宋卫东, 宋高兴. 弹道修正火箭弹对面目标射击的最佳CEP研究 [J]. 弹道学报, 2014, 26(4): 51–55. DOI: 10.3969/j.issn.1004-499X.2014.04.010.SONG X E SONG W D, SONG G X. Research on the best CEP of ballistic correction rocket firing on surface target [J]. Journal of Ballistics, 2014, 26(4): 51–55. DOI: 10.3969/j.issn.1004-499X.2014.04.010. [21] ABRAMOWITZ M, STEGUN I A. Handbook of mathematical functions with formulas, graphs, and mathematical tables [M]. Washington: Government Printing Office, 1967.