Power characteristics of drum-shaped warheads under multi-point detonations
-
摘要: 为调控对地弹药破片杀伤威力场,研究了一种鼓形战斗部在静爆和动爆下的威力特性。采用数值模拟研究了端面中心单点、中心单点两种起爆方式下,鼓形战斗部相较于同口径圆柱形战斗部在静爆下的破片威力特性及动爆下对地面装甲车辆目标的毁伤面积。在此基础上,调整鼓形战斗部起爆方式为偏心两线同时起爆、偏心两线序贯起爆及偏心两线同时-序贯起爆,计算了不同偏心起爆下鼓形战斗部静爆时的破片速度、飞散角和动爆时对车辆目标的毁伤面积及有效破片落地动能分布。研究表明,相比于同口径的圆柱形战斗部结构,鼓形战斗部的破片飞散角增大了55.98%,对地面军用车辆的毁伤面积最大增大了59.3%;相对于偏心两线同时起爆,偏心两线同时-序贯起爆的鼓形战斗部破片飞散角增大了18.0%,破片飞散的离散程度提高了11.48%;相对于装药中心单点起爆,偏心两线序贯起爆下鼓形战斗部的毁伤面积受炸高影响较小,在落角50°、落速200 m/s、炸高为9 m时的毁伤面积达47.15 m2。通过调整战斗部的结构和起爆方式,可有效增大破片的飞散角,增大破片对目标的覆盖面积,提高战斗部的毁伤效能。Abstract: To adjust the fragment lethality field of the anti-ground ammunition, the paper studies the power characteristics of a drum-shaped warhead under static and dynamic detonation. Aiming at the ground armored vehicles, the damage efficiency of the drum-shaped warhead under different initiation modes is analyzed. The fragment power characteristics of a drum-shaped warhead under static detonation and the damage area to vehicle target under dynamic detonation are studied by numerical simulation under two initiation modes of end face center single point and center single point compared with cylindrical warhead of the same caliber. On this basis, further by adjusting the drum-shaped warhead initiation mode into three kinds of eccentric two-line synchronous initiation, eccentric two-line sequential initiation and eccentric two-line synchronous-sequential initiation. The fragment velocity and dispersion angle of the drum-shaped warhead during static detonation, the damage area to the vehicle target and the distribution of the effective fragment landing kinetic energy during dynamic detonation are calculated under different eccentric initiation. The effect of adjusting the detonating mode on the destruction power field of the fragment of the drum-shaped warhead is analyzed by comparing the power characteristics of the fragment of the drum-shaped warhead during the static detonation and the damage results of the vehicle target during dynamic detonation with the corresponding results under the end face center single-point initiation of the drum-shaped warhead. The results show that compared with the cylindrical warhead structure with the same caliber, the fragment dispersion angle of the drum-shaped warhead is increased by 55.98%, and the damaged area of the ground military vehicles is increased by the maximum 59.3%. Compared with the eccentric two-line synchronous initiation, the drum-shaped warhead with eccentric two lines synchronous-sequential initiation can increase the fragment dispersion angle by 18.0%, and increase the dispersion of fragments by 11.48%. Compared with the single-point initiation of charge center, the damage area of the drum-shaped warhead under eccentric two-line sequential initiation is less affected by the burst height, and the damage area reaches 47.15 m2 when the falling angle is 50°, the falling velocity is 200 m/s and the burst height is 9 m. By adjusting the structure and the initiation mode of the warhead, the dispersion angle of fragments can be effectively increased, the coverage area of fragments to the target can be increased, and the damage efficiency of the warhead can be improved.
-
Key words:
- fragment /
- multi-point initiation /
- damage area /
- drum-shaped warhead /
- power characteristics
-
表 1 战斗部装药及球形破片质量
Table 1. The mass of warhead charges and spherical fragments
战斗部 战斗部形状 装药质量/g 球形破片质量/g 战斗部 战斗部形状 装药质量/g 球形破片质量/g Ⅰ 圆柱形 9234.36 8954.24 Ⅲ 鼓形 8585 8608.72 Ⅱ 圆柱形 6364.08 7517.53 Ⅳ 鼓形 8585 8608.72 表 2 战斗部单点起爆破片飞散角的统计参数
Table 2. Statistical parameters of the fragment dispersion angles for single-point detonation of warheads
战斗部 ${\bar \sigma _{\text{a}}}$/(°) s/(°) 战斗部 ${\bar \sigma _{\text{a}}}$/(°) s/(°) Ⅰ 7.77 7.86 Ⅲ 12.12 13.85 Ⅱ 7.63 7.96 Ⅳ 12.44 14.49 表 3 战斗部偏心起爆破片飞散角的统计参数
Table 3. Statistical parameters of the fragment dispersion angles for eccentric detonation of warheads
战斗部 ${\bar \sigma _{\text{a}}}$/(°) s/(°) 战斗部 ${\bar \sigma _{\text{a}}}$/(°) s/(°) Ⅳ 12.44 14.49 Ⅵ 10.32 11.94 Ⅴ 8.44 10.98 Ⅶ 9.96 12.24 -
[1] 卢芳云, 李翔宇, 林玉亮. 战斗部结构与原理[M]. 北京: 科学出版社, 2009: 90–91. [2] 刘彦, 黄风雷, 吴相彬. 杀爆战斗部对导弹阵地的毁伤效能研究 [J]. 北京理工大学学报, 2008, 28(5): 385–387. DOI: 10.15918/j.tbit.1001-0645.2008.05.008.LIU Y, HUANG F L, WU X B. A study on the damage effectiveness of blast-fragmentation warhead on attacking anti-aircraft missile positions [J]. Transactions of Beijing Institute of Technology, 2008, 28(5): 385–387. DOI: 10.15918/j.tbit.1001-0645.2008.05.008. [3] 张浩宇, 张树凯, 程立, 等. 序贯起爆参数对定向战斗部毁伤效能的影响 [J]. 高压物理学报, 2022, 36(2): 025101. DOI: 10.11858/gywlxb.20210836.ZHANG H Y, ZHANG S K, CHENG L, et al. Influence of sequential initiation parameters on damage effectiveness of aimed warhead [J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 025101. DOI: 10.11858/gywlxb.20210836. [4] CHEN W K, LI X Y, LU F Y, et al. Parallel control to fragments of a cylindrical structure driven by explosive inside [J]. Mathematical Problems in Engineering, 2015, 2015: 723463. DOI: 10.1155/2015/723463. [5] 龚柏林, 卢芳云, 李翔宇. D型预制破片战斗部破片飞散过程的数值模拟 [J]. 弹箭与制导学报, 2010, 30(1): 88–90, 94. DOI: 10.15892/j.cnki.djzdxb.2010.01.022.GONG B L, LU F Y, LI X Y. Simulation and study on the fragment ejection process of premade D-shape warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance., 2010, 30(1): 88–90. DOI: 10.15892/j.cnki.djzdxb.2010.01.022. [6] WANG M F, LU F Y, LI X Y, et al. A new method to estimate the projection angles of fragments from a D shape configuration [J]. Applied Mechanics and Materials, 2013, 275-277: 122–127. DOI: 10.4028/www.scientific.net/AMM.275-277.122. [7] 李振铎, 李翔宇, 卢芳云, 等. D字形预制破片战斗部破片能量分布特性 [J]. 弹箭与制导学报, 2016, 36(1): 55–58, 62. DOI: 10.15892/j.cnki.djzdxb.2016.01.014.LI Z D, LI X Y, LU F Y, et al. Study on fragment energy distribution characteristics of premade D-shape warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(1): 55–58. DOI: 10.15892/j.cnki.djzdxb.2016.01.014. [8] 李翔宇, 李振铎, 梁民族. D型战斗部破片飞散性及威力场快速计算 [J]. 爆炸与冲击, 2019, 39(4): 043301. DOI: 10.11883/bzycj-2017-0420.LI X Y, LI Z D, LIANG M Z. Dispersion properties and rapid calculation of fragment force field of D-shaped fragmentation warhead [J]. Explosion and Shock Waves, 2019, 39(4): 043301. DOI: 10.11883/bzycj-2017-0420. [9] GUO Z W, HUANG G Y, LIU H, et al. Fragment velocity distribution of the bottom part of D-shaped casings under eccentric initiation [J]. International Journal of Impact Engineering, 2020, 144: 103649. DOI: 10.1016/j.ijimpeng.2020.103649. [10] GUO Z W, HUANG G Y, ZHU W, et al. Fragment velocity distribution of D-shaped casing with multiple fragment layers [J]. International Journal of Impact Engineering, 2019, 131: 85–93. DOI: 10.1016/j.ijimpeng.2019.04.027. [11] 冯顺山, 黄广炎, 董永香. 一种聚焦式杀伤战斗部的设计方法 [J]. 弹道学报, 2009, 21(1): 24–26.FENG S S, HUANG G Y, DONG Y X. A new design method of fragment focusing warhead [J]. Journal of Ballistics, 2009, 21(1): 24–26. [12] 袁书强, 沈正祥, 李亚哲, 等. 双曲线型聚焦战斗部破片的设计方法 [J]. 火炸药学报, 2015, 38(1): 36–40. DOI: 10.14077/j.issn.1007-7812.2015.01.09.YUAN S Q, SHEN Z X, LI Y Z, et al. Design method of fragments to focused warhead of hyperbola type [J]. Chinese Journal of Explosives and Propellants, 2015, 38(1): 36–40. DOI: 10.14077/j.issn.1007-7812.2015.01.09. [13] 严翰新, 姜春兰, 李明, 等. 不同起爆方式对聚焦战斗部性能影响的数值模拟 [J]. 含能材料, 2009,17(2): 143–146, 151. DOI: 10.3969/jissn.1006-9941.2009.02.004.YAN H X, JIANG C L, LI M, et al. Numerical simulation of the effect of different initiation positions on a certain focusing fragment warhead [J]. Chinese Journal of Energetic Materials, 2009, 17(2): 143–146, 151. DOI: 10.3969/jissn.1006-9941.2009.02.004. [14] 王娟娟, 郭双锋, 袁宝慧, 等. 聚焦战斗部破片聚焦性能的数值计算和试验研究 [J]. 火炸药学报, 2013, 36(2): 87–90. DOI: 10.14077/j.issn.1007-7812.2013.02.017.WANG J J, GUO S F, YUAN B H, et al. Numerical simulations and experimental study on directional-focused fragmentation warhead [J]. Chinese Journal of Explosives & Propellants, 2013, 36(2): 87–90. DOI: 10.14077/j.issn.1007-7812.2013.02.017. [15] 李元, 赵倩, 熊诗辉, 等. 一种异面棱柱战斗部威力特性的数值模拟 [J]. 含能材料, 2019, 27(2): 97–103. DOI: 10.11943/CJEM2018143.LI Y, ZHAO Q, XIONG S H, et al. Numerical modeling on lethality of a faceted prismatic warhead [J]. Chinese Journal of Energetic Materials, 2019, 27(2): 97–103. DOI: 10.11943/CJEM2018143. [16] 张浩宇, 张树凯, 程立, 等. 杀伤爆破战斗部起爆方式对地面目标杀伤威力的影响 [J]. 兵工学报, 2021, 42(11): 2300–2309. DOI: 10.3969/j.issn.1000-1093.2021.11.002.ZHANG H Y, ZHANG S K, CHENG L, et al. The impact of initiation mode of blast fragmentation warhead on the power to kill the ground target [J]. Acta Armamentarii, 2021, 42(11): 2300–2309. DOI: 10.3969/j.issn.1000-1093.2021.11.002. [17] 刘琛, 李元, 李燕华, 等. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011.LIU C, LI Y, LI Y H, et al. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materials, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011. [18] LI Y, WEN Y Q. Experiment and numerical modeling of asymmetrically initiated hexagonal prism warhead [J]. Advances in Mechanical Engineering, 2017, 9(1): 1–14. DOI: 10.1177/1687814016687966.