气固两相介质协同抑制瓦斯爆炸实验及分子动力学研究

谯永刚 华杰 袁丹萍 张泽宇 左文哲

谯永刚, 华杰, 袁丹萍, 张泽宇, 左文哲. 气固两相介质协同抑制瓦斯爆炸实验及分子动力学研究[J]. 爆炸与冲击, 2024, 44(5): 055402. doi: 10.11883/bzycj-2023-0322
引用本文: 谯永刚, 华杰, 袁丹萍, 张泽宇, 左文哲. 气固两相介质协同抑制瓦斯爆炸实验及分子动力学研究[J]. 爆炸与冲击, 2024, 44(5): 055402. doi: 10.11883/bzycj-2023-0322
QIAO Yonggang, HUA Jie, YUAN Danping, ZHANG Zeyu, ZUO Wenzhe. Experimental and molecular dynamics studies on the synergistic suppression of gas explosions in gas-solid media[J]. Explosion And Shock Waves, 2024, 44(5): 055402. doi: 10.11883/bzycj-2023-0322
Citation: QIAO Yonggang, HUA Jie, YUAN Danping, ZHANG Zeyu, ZUO Wenzhe. Experimental and molecular dynamics studies on the synergistic suppression of gas explosions in gas-solid media[J]. Explosion And Shock Waves, 2024, 44(5): 055402. doi: 10.11883/bzycj-2023-0322

气固两相介质协同抑制瓦斯爆炸实验及分子动力学研究

doi: 10.11883/bzycj-2023-0322
基金项目: 国家自然科学基金联合基金(U1810206);山西省青年科学研究项目(202103021223116);
详细信息
    作者简介:

    谯永刚(1984- ),男,副研究员,博士研究生,qiaoyonggang@tyut.edu.cn

    通讯作者:

    华 杰(1998- ),男,硕士研究生,hahahuajie@163.com

  • 中图分类号: O389

Experimental and molecular dynamics studies on the synergistic suppression of gas explosions in gas-solid media

  • 摘要: 针对传统单相抑爆介质效果不佳的问题,提出气固两相介质通过不同抑爆原理的协同作用,实现高效快速抑制瓦斯爆炸。研究使用NaHCO3粉体与CO2气体协同抑制瓦斯爆炸的方法,选用标准20 L球形爆炸测试装置,并通过密度泛函理论对甲烷爆炸微观反应机理中各反应物、过渡态、产物进行构型优化,在此基础上进行后续计算。结果表明:体积分数为16%的CO2和质量浓度为0.35 g/L的NaHCO3单相介质对瓦斯爆炸具有优良的抑制效果,但0.1 g/L粉体存在时会使最大升压速率提升17.9%;气固两相介质抑爆相较单相CO2、单相NaHCO3粉体使最大爆炸压力降低,采用体积分数为8%的CO2协同0.125 g/L粉体时,瓦斯爆炸最大爆炸压力降低72.42%,最大升压速率降至2.345 MPa/s,抑制效果达到最优;但当体积分数为4%的CO2协同0.05 g/L粉体时会使最大爆炸升压速率上升93.68%,反应呈现出一定的加剧现象;量子化学计算表明,在气固两相介质协同抑制瓦斯爆炸的过程中,NaHCO3粉体裂解会吸收反应体系中的热量,其分解产物会与混合体系中的OH·、H·优先反应,阻碍O·的产生,将链式过程抑制在CH2O阶段,进而抑制链式反应的传递过程;NaHCO3粉体分解产生的CO2与混合体系中的CO2稀释了混合体系中甲烷的体积分数,减少甲烷与氧气分子之间碰撞发生的概率,对反应进程起到有效抑制作用。
  • 图  1  20 L球形爆炸实验系统

    Figure  1.  20 L spherical explosion system

    图  2  NaHCO3粒径分布与表面微观表征

    Figure  2.  NaHCO3 particle size distribution and surface microscopic characterization

    图  3  NaHCO3粉体TG-DSC曲线

    Figure  3.  TG-DSC curves of NaHCO3 powder

    图  4  CO2体积分数对火焰形态影响

    Figure  4.  Effect of CO2 volume fraction on flame shape

    图  5  CO2作用下瓦斯爆炸特性

    Figure  5.  Gas explosion characteristic under the action of CO2

    图  6  NaHCO3粉体作用下火焰的传播形态

    Figure  6.  Flame propagation morphology under the action of NaHCO3 powder

    图  7  NaHCO3粉体作用下瓦斯爆炸特性参数的变化

    Figure  7.  Change of gas explosion characteristic parameters under the action of NaHCO3 powder

    图  8  气固两相介质作用下瓦斯爆炸参数的变化

    Figure  8.  Variation of gas explosion parameters in gas-solid two-phase medium

    图  9  气固协同抑制下甲烷爆炸火焰的形态变化

    Figure  9.  Change of the methane explosion flame morphology under gas-solid synergistic inhibition

    表  1  甲烷爆炸微观反应简化机理[28]

    Table  1.   Simplified microscopic reaction mechanism of methane explosion[28]

    反应方程式
    R1CH3·+O2→O·+CH3O
    R2CH3·+O2→OH·+CH2O
    R3H·+O2→O·+OH·
    R4HO2+CH3·→OH·+CH3O
    R5CH3·+CH2O→HCO·+CH4
    R6H·+CH4→CH3·+H2
    R7OH·+CH4→CH3·+H2O
    R8H·+CH2O (+M)→CH3O(+M)
    下载: 导出CSV

    表  2  气固两相介质协同作用下甲烷爆炸微观反应机理热力学数据及自由能垒

    Table  2.   Thermodynamic data and free energy barriers for the microscopic reaction mechanism of methane explosion under the synergistic action of gas-solid medium

    反应 状态 H/E0 G/E0 E/E0 ΔGa/ (kJ·mol−1 ΔGb/ (kJ·mol−1 ΔH/ (kJ·mol−1 ΔG/ (kJ·mol−1
    R1 CH3·+O2 −190.17 −190.20 −190.17
    CH3·+O·+O· −190.16 −190.19 −190.16 13.03 42.94 −32.58 −29.91
    O·+CH3O −190.18 −190.21 −190.18
    R2 CH3·+O2 −190.17 −190.20 −190.17
    CH3·+2O·+H· −190.13 −190.16 −190.13 109.30 117.92 −75.45 −8.62
    OH·+CH2O −190.20 −190.20 −190.27
    R3 H·+O2 −150.90 −150.92 −150.90
    H·+O·+O· −150.78 −150.80 −150.78 311.22 101.04 246.52 210.18
    O·+OH· −150.80 −150.84 −150.82
    R4 HO2+CH3· −190.70 −190.74 −190.70
    CH3·+O·+OH· −190.70 −190.73 −190.70 19.51 230.38 −258.24 −210.87
    OH·+CH3O −190.80 −190.82 −190.80
    R5 CH3·+CH2O −154.27 −154.32 −154.27
    CH3·+H·+HCO· −154.23 −154.23 −154.28 235.68 277.37 −55.19 −41.69
    HCO·+CH4 −154.29 −154.33 −154.30
    R6 H·+CH4 −40.97 −41.00 −40.97
    CH3·+H·+H· −40.97 −40.97 −40.95 67.71 70.98 1.67 −3.26
    CH3·+H2 −40.97 −41.00 −40.97
    R7 OH·+CH4 −116.21 −116.24 −116.20
    CH3·+H·+OH· −116.19 −116.23 −116.19 22.90 79.51 −39.95 −56.61
    CH3·+H2O −116.23 −116.26 −116.22
    R8 H·+CH2O −115.05 −115.07 −115.08
    CH2O·+H· −115.05 −115.06 −115.08 19.20 101.71 −125.37 −82.51
    CH3O −115.10 −115.10 −115.14
    R9 NaOH+OH· −313.87 −313.90 −313.87
    NaO·+H2O −313.86 −313.89 −313.86 15.84 13.52
    R10 NaOH+H· −238.68 −238.71 −238.68
    Na·+H2O −238.51 −238.57 −238.51 442.60 367.43
     注:E0=2625.5 kJ/mol
    下载: 导出CSV
  • [1] 朱云飞, 王德明, 李德利, 等. 2000—2016年我国煤矿重特大事故统计分析 [J]. 能源与环保, 2018, 40(9): 40–43. DOI: 10.19389/j.cnki.1003-0506.2018.09.008.

    ZHU Y F, WANG D M, LI D L, et al. Statistics analysis of serious coal mine disasters from 2000 to 2016 in China [J]. China Energy and Environmental Protection, 2018, 40(9): 40–43. DOI: 10.19389/j.cnki.1003-0506.2018.09.008.
    [2] 余明高, 阳旭峰, 郑凯, 等. 我国煤矿瓦斯爆炸抑爆减灾技术的研究进展及发展趋势 [J]. 煤炭学报, 2020, 45(1): 168–188. DOI: 10.13225/j.cnki.jccs.YG19.1422.

    YU M G, YANG X F, ZHENG K, et al. Progress and development of coal mine gas explosion suppression and disaster reduction technology in China [J]. Journal of China Coal Society, 2020, 45(1): 168–188. DOI: 10.13225/j.cnki.jccs.YG19.1422.
    [3] TAN W, LÜ D, LIU L Y, et al. Suppression of methane/air explosion by water mist with potassium halide additives driven by CO2 [J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2742–2748. DOI: 10.1016/j.cjche.2019.03.020.
    [4] WEN X P, WANG M M, WANG F H, et al. Combined effects of obstacle and fine water mist on gas explosion characteristics [J]. Chinese Journal of Chemical Engineering, 2021, 40: 131–140. DOI: 10.1016/j.cjche.2020.10.042.
    [5] 贾宝山, 肖明慧, 王连聪, 等. 受限空间N2对CH4最大爆炸压力的影响实验与模拟研究 [J]. 矿业安全与环保, 2018, 45(2): 11–14, 20. DOI: 10.3969/j.issn.1008-4495.2018.02.003.

    JIA B S, XIAO M H, WANG L C, et al. Influence experiment and simulation study of N2 on the maximum explosion pressure of CH4 in the limited space [J]. Mining Safety & Environmental Protection, 2018, 45(2): 11–14, 20. DOI: 10.3969/j.issn.1008-4495.2018.02.003.
    [6] CUI C B, SHAO H, JIANG S G, et al. Experimental study on gas explosion suppression by coupling CO2 to a vacuum chamber [J]. Powder Technology, 2018, 335: 42–53. DOI: 10.1016/j.powtec.2018.04.070.
    [7] 文虎, 王秋红, 邓军, 等. 超细Al(OH)3粉体浓度对甲烷爆炸压力的影响 [J]. 煤炭学报, 2009, 34(11): 1479–1482. DOI: 10.3321/j.issn:0253-9993.2009.11.009.

    WEN H, WANG Q H, DENG J, et al. Effect of the concentration of Al(OH)3 ultrafine powder on the pressure of methane explosion [J]. Journal of China Coal Society, 2009, 34(11): 1479–1482. DOI: 10.3321/j.issn:0253-9993.2009.11.009.
    [8] LIU X D, GUO J, TANG W F, et al. Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan [J]. Composites Part A: Applied Science and Manufacturing, 2019, 119: 291–298. DOI: 10.1016/j.compositesa.2019.02.009.
    [9] 周建华, 郝变芝, 高敬民. 聚磷酸铵杂化纳米SiO2溶胶的制备及阻燃性能研究 [J]. 陕西科技大学学报, 2017, 35(2): 77–81. DOI: 10.19481/j.cnki.issn1000-5811.2017.02.015.

    ZHOU J H, HAO B Z, GAO J M. Study on the preparation and flame retardancy of ammonium polyphosphate hybrid nano-silica sol [J]. Journal of Shaanxi University of Science & Technology, 2017, 35(2): 77–81. DOI: 10.19481/j.cnki.issn1000-5811.2017.02.015.
    [10] 李笑堃. 煤矿井下主动抑爆隔爆系统技术研究 [D]. 太原: 中北大学, 2016.

    LI X K. Research on the technology of coal mine active explosion suppression and isolation system [D]. Taiyuan: North University of China, 2016.
    [11] LIU R Z, ZHANG M C, JIA B S. Inhibition of gas explosion by nano-SiO2 powder under the condition of obstacles [J]. Integrated Ferroelectrics, 2021, 216(1): 305–321. DOI: 10.1080/10584587.2021.1911296.
    [12] WANG Q H, SUN Y L, JIANG J C, et al. Inhibiting effects of gas-particle mixtures containing CO2, Mg(OH)2 particles, and NH4H2PO4 particles on methane explosion in a 20-L closed vessel [J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 104082. DOI: 10.1016/j.jlp.2020.104082.
    [13] 梁天水, 林争雄, 毛思远, 等. 典型超细干粉与惰性气体的协同灭火效果研究 [J]. 中国安全科学学报, 2021, 31(11): 148–154. DOI: 10.16265/j.cnki.issn1003-3033.2021.11.021.

    LIANG T S, LIN Z X, MAO S Y, et al. Study on synergistic fire extinguishing effect of typical superfine dry powder and inert gas [J]. China Safety Science Journal, 2021, 31(11): 148–154. DOI: 10.16265/j.cnki.issn1003-3033.2021.11.021.
    [14] CHEN X F, HOU X Z, ZHAO Q, et al. Suppression of methane/coal dust deflagration by Al(OH)3 based on flame propagation characteristics and thermal decomposition [J]. Fuel, 2022, 311: 122530. DOI: 10.1016/j.fuel.2021.122530.
    [15] JIA J Z, TIAN X Y, WANG F X. Study on the effect of KHCO3 particle size and powder spraying pressure on the methane explosion suppression characteristics of pipe networks [J]. ACS Omega, 2022, 7(36): 31974–31982. DOI: 10.1021/acsomega.2c02945.
    [16] 李孝斌, 张瑞杰, 崔沥巍, 等. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析 [J]. 爆炸与冲击, 2020, 40(3): 032101. DOI: 10.11883/bzycj-2019-0090.

    LI X B, ZHANG R J, CUI L W, et al. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea [J]. Explosion and Shock Waves, 2020, 40(3): 032101. DOI: 10.11883/bzycj-2019-0090.
    [17] 何文浩, 郝朝瑜, 张亚超, 等. 硅藻土抑制瓦斯爆炸的微观机理分析 [J]. 煤炭学报, 2022, 47(10): 3695–3703. DOI: 10.13225/j.cnki.jccs.2021.1457.

    HE W H, HAO C Y, ZHANG Y C, et al. Microscopic mechanism analysis of inhibition on methane explosion by diatomite [J]. Journal of China Coal Society, 2022, 47(10): 3695–3703. DOI: 10.13225/j.cnki.jccs.2021.1457.
    [18] 孟祥卿. 气/固两相抑制剂的甲烷抑爆特性研究 [D]. 焦作: 河南理工大学, 2019. DOI: 10.27116/d.cnki.gjzgc.2019.000200.

    MENG X Q. Suppression characteristics of gas/solid two-phase inhibitors on methane explosion [D]. Jiaozuo, Henan, China: Henan Polytechnic University, 2019. DOI: 10.27116/d.cnki.gjzgc.2019.000200.
    [19] 田志辉. 气-固混合抑制剂对矿井瓦斯的抑爆实验研究 [D]. 西安: 西安科技大学, 2013.

    TIAN Z H. Suppressing experimental study on mine methane explosion by the gas-solid mixied inhibitors [D]. Xi’an: Xi’an University of Science and Technology, 2013.
    [20] LUO Z M, SU B, LI Q, et al. Micromechanism of the initiation of a multiple flammable gas explosion [J]. Energy & Fuels, 2019, 33(8): 7738–7748. DOI: 10.1021/acs.energyfuels.9b00480.
    [21] 罗振敏, 康凯, 任军莹. NH3对甲烷链式爆炸的微观作用机理 [J]. 煤炭学报, 2016, 41(4): 876–883. DOI: 10.13225/j.cnki.jccs.2015.0922.

    LUO Z M, KANG K, REN J Y. Microscopic mechanism of NH3 on chain of methane explosion [J]. Journal of China Coal Society, 2016, 41(4): 876–883. DOI: 10.13225/j.cnki.jccs.2015.0922.
    [22] SU B, LUO Z M, WANG T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture [J]. Journal of Hazardous Materials, 2021, 403: 123680. DOI: 10.1016/j.jhazmat.2020.123680.
    [23] 姜海洋, 张国宾. CO与H2O抑制瓦斯爆炸的微观反应机理 [J]. 煤炭转化, 2019, 42(6): 77–87. DOI: 10.19726/j.cnki.ebcc.201906011.

    JIANG H Y, ZHANG G B. Microscopic mechanism of CO and H2O on chain of methane explosion [J]. Coal Conversion, 2019, 42(6): 77–87. DOI: 10.19726/j.cnki.ebcc.201906011.
    [24] 余明高, 孔杰, 王燕, 等. 不同浓度甲烷-空气预混气体爆炸特性的试验研究 [J]. 安全与环境学报, 2014, 14(6): 85–90. DOI: 10.13637/j.issn.1009-6094.2014.06.021.

    YU M G, KONG J, WANG Y, et al. Experiment study on explosion characteristic features of the methane-air pre-mixture at different concentrations [J]. Journal of Safety and Environment, 2014, 14(6): 85–90. DOI: 10.13637/j.issn.1009-6094.2014.06.021.
    [25] LIU Y, ZHANG Y S, MENG X B, et al. Research on flame propagation and explosion overpressure of oil shale dust explosion suppression by NaHCO3 [J]. Fuel, 2022, 314: 122778. DOI: 10.1016/j.fuel.2021.122778.
    [26] 王华, 葛岭梅, 邓军. 惰性气体抑制矿井瓦斯爆炸的实验研究 [J]. 矿业安全与环保, 2008, 35(1): 4–7. DOI: 10.3969/j.issn.1008-4495.2008.01.002.

    WANG H, GE L M, DENG J. Experimental study of using inert gas to suppress mine gas explosion [J]. Mining Safety & Environmental Protection, 2008, 35(1): 4–7. DOI: 10.3969/j.issn.1008-4495.2008.01.002.
    [27] 丁超, 王信群, 徐海顺, 等. 喷射超细ABC粉体对瓦斯爆炸的抑制与增强作用 [J]. 煤炭学报, 2021, 46(6): 1799–1807. DOI: 10.13225/j.cnki.jccs.hz21.0350.

    DING C, WANG X Q, XU H S, et al. Suppression and enhancement of methane/air explosion by discharge of ultrafine ABC powders [J]. Journal of China Coal Society, 2021, 46(6): 1799–1807. DOI: 10.13225/j.cnki.jccs.hz21.0350.
    [28] 梁运涛. 瓦斯爆炸反应动力学特性及其抑制机理 [M]. 北京: 科学出版社, 2013: 33–35, 96–112.
    [29] 王秋红, 蒋夏夏, 代爱萍. 基于Gaussian的甲烷爆炸微观反应计算分析 [J]. 中国安全生产科学技术, 2022, 18(6): 178–184. DOI: 10.11731/j.issn.1673-193x.2022.06.027.

    WANG Q H, JIANG X X, DAI A P. Calculation and analysis on micro reaction of methane explosion based on Gaussian [J]. Journal of Safety Science and Technology, 2022, 18(6): 178–184. DOI: 10.11731/j.issn.1673-193x.2022.06.027.
    [30] 侯金丽, 金平, 蔡国飙. 基于敏感性分析的氧/甲烷燃烧反应简化机理 [J]. 航空动力学报, 2012, 27(7): 1549–1554. DOI: 10.13224/j.cnki.jasp.2012.07.029.

    HOU J L, JIN P, CAI G B. Reduced mechanism for oxygen/methane combustion based on sensitivity analysis [J]. Journal of Aerospace Power, 2012, 27(7): 1549–1554. DOI: 10.13224/j.cnki.jasp.2012.07.029.
    [31] WANG Y, LIN C D, QI Y Q, et al. Suppression of polyethylene dust explosion by sodium bicarbonate [J]. Powder Technology, 2020, 367: 206–212. DOI: 10.1016/j.powtec.2020.03.049.
    [32] LIN C D, QI Y Q, GAN X Y, et al. Investigation into the suppression effects of inert powders on the minimum ignition temperature and the minimum ignition energy of polyethylene dust [J]. Processes, 2020, 8(3): 294. DOI: 10.3390/pr8030294.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  96
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 修回日期:  2023-12-10
  • 网络出版日期:  2024-01-25
  • 刊出日期:  2024-05-08

目录

    /

    返回文章
    返回