A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation
-
摘要: 鉴于高熵合金材料(high-entropy alloy, HEA)在高应变率动态响应下呈现不同的破坏模式及力学性能,其潜在机理从宏观角度已不能够完全解释,需从微观角度研究其动态响应过程中的原子结构变化、位错分布变化、演变机理及变形机制,为优化HEA防护材料的加工工艺、制备方法等提供参考。利用分子动力学模拟的方法,设计了[100]、[110]和[111]等3种取向结构的Al0.3CoCrFeNi高熵合金在不同应变率下的压缩、拉伸及冲击试验,分析了动态响应过程中原子结构变化、位错分布变化、演变机理及变形机制。压缩试验中:[110]取向结构的Al0.3CoCrFeNi高熵合金的屈服强度最高,[111]的次之,[100]的最低;[100]取向结构的Al0.3CoCrFeNi高熵合金主要的变形机制为孪晶变形,[110]的为滑移变形,[111]的为位错变形。拉伸试验中:[111]取向结构的Al0.3CoCrFeNi高熵合金的屈服强度最高,[100]的次之,[110]的最低;[100]取向结构Al0.3CoCrFeNi高熵合金拉伸过程中孪晶结构较多,[110]取向结构的Al0.3CoCrFeNi高熵合金产生较规则的密排六方结构滑移面,[111]取向结构的Al0.3CoCrFeNi高熵合金不会产生任何滑移面。随着应变率的升高,3种取向结构的Al0.3CoCrFeNi高熵合金压缩和拉伸屈服强度均大幅度提高,对应伸长量增大。较低应变率(1×109 s−1)下的塑性变形机制主要为滑移变形,但滑移系较少;中应变率(1×1010 s−1)下的塑性变形机制是以滑移为主的变形机制,但滑移系较多;高应变率(1×1011 s−1)下的塑性变形机制是由原子排列无序化的非晶原子诱导的变形。[110]取向结构的Al0.3CoCrFeNi高熵合金的抗冲击性能最好,与其具有最高的屈服强度,并且在屈服结束阶段也能保持最高的应力有关。Abstract: High-entropy alloy (HEA) materials exhibit different failure modes and mechanical properties under high strain rate dynamic response. Because its potential mechanism cannot be fully explained from a macro perspective, it is necessary to study the atomic structure change, dislocation distribution change, evolution mechanism and deformation mechanism in the dynamic response process from a microscopic perspective. This study provides a reference for optimizing the processing technology and preparation method of HEA protective materials. The molecular dynamics simulation is adopted to design the compression, tensile at different strain rates and impact tests of [110], [111] and [100] three oriented Al0.3CoCrFeNi HEA. The atomic structure changes, dislocation distribution change, evolution mechanism and deformation mechanism in the dynamic response process are then analyzed. In the compression test: the yield strength of Al0.3CoCrFeNi high-entropy alloy with [110] orientation structure is the highest, followed by [111] and [100]. The main deformation mechanism of the [100] orientation structure is twin deformation, [110] orientation structure is slip deformation, and [111] orientation structure is dislocation deformation. In the tensile test: the yield strength of Al0.3CoCrFeNi high-entropy alloy with [111] orientation structure is the highest, followed by [100] and [110]. [100] orientation structure presents more twin structure during the tensile process; [110] exhibits more regular hexagonal close-packed structure slip surface; while [111] does not produce any slip surface. With the increase of strain rate, the compressive and tensile yield strength increased greatly, and the corresponding elongation increased, too. The plastic deformation mechanism at low strain rate (1×109 s−1) is mainly slip deformation, but the number of slip systems is small. The plastic deformation mechanism at medium strain rate (1×1010 s−1) is mainly slip deformation mechanism, but many slip systems appear. The plastic deformation mechanism at high strain rate (1×1011 s−1) is induced by amorphous atoms with disordered atomic arrangement. The Al0.3CoCrFeNi high-entropy alloy with [110] orientation structure has the best impact resistance, which is attributed to its highest yield strength and the highest stress at the end of the yield stage.
-
表 1 不同原子对之间相互作用的Lennard-Jones参数
Table 1. Lennard-Jones parameters of the interactions between different atom pairs
原子对 ε/eV σ/Å Al-Co 0.0469 2.578 Cr-Co 0.0466 2.456 Fe-Co 0.0477 2.448 Co-Co 0.0043 2.584 Ni-Co 0.0474 2.428 表 2 不同取向结构的Al0.3CoCrFeNi高熵合金在压缩及拉伸过程中各个变形阶段临界点的应力和变形量
Table 2. The stress and deformation at the critical point of each deformation stage of Al0.3CoCrFeNi HEA with different orientation structures during compressive and tensile processes
分界点 应力/GPa 应变/% 压缩 拉伸 压缩 拉伸 [100] [110] [111] [100] [110] [111] [100] [110] [111] [100] [110] [111] 弹性变形与屈服阶段分界点 5.38 18.41 16.63 10.28 6.14 10.45 5.5 4.8 5.3 10.0 4.5 5.0 屈服与塑性变形阶段分界点 1.55 2.43 1.23 3.51 2.30 3.74 8.4 6.2 6.8 12.8 5.6 6.6 表 3 不同应变率下不同取向结构的Al0.3CoCrFeNi高熵合金的屈服应力及应变
Table 3. Yield stresses and strains of Al0.3CoCrFeNi high-entropy alloys with different orientation structures at different strain rates
模拟试验 晶体取向 1×109 s−1 1×1010 s−1 1×1011 s−1 屈服应力/GPa 应变/% 屈服应力/GPa 应变/% 屈服应力/GPa 应变/% 压缩 [100] 5.38 5.5 7.34 6.0 33.70 36.0 [110] 18.41 4.8 31.22 7.1 34.38 13.7 [111] 16.63 5.3 24.43 7.8 30.11 15.3 拉伸 [100] 10.28 10.0 11.57 12.2 18.16 20.0 [110] 6.14 4.5 7.50 4.7 15.19 12.6 [111] 10.45 5.0 15.19 12.6 20.62 12.2 -
[1] CHENG J C, ZHANG S, LIU Q, et al. Ballistic impact experiments and modeling on impact cratering, deformation and damage of 2024-T4 aluminum alloy [J]. International Journal of Mechanical Sciences, 2022, 224: 107312. DOI: 10.1016/j.ijmecsci.2022.107312. [2] RANAWEERA P, BAMBACH M R, WEERASINGHE D, et al. Ballistic impact response of monolithic steel and tri-metallic steel-titanium-aluminium armour to nonrigid NATO FMJ M80 projectiles [J]. Thin-Walled Structures, 2023, 182: 110200. DOI: 10.1016/j.tws.2022.110200. [3] LI L, ZHANG Q C, LU T J. Ballistic penetration of deforming metallic plates: experimental and numerical investigation [J]. International Journal of Impact Engineering, 2022, 170: 104359. DOI: 10.1016/j.ijimpeng.2022.104359. [4] DUBEY R, JAYAGANTHAN R, RUAN D, et al. Ballistic perforation and penetration of 6xxx-series aluminium alloys: A review [J]. International Journal of Impact Engineering, 2023, 172: 104426. DOI: 10.1016/j.ijimpeng.2022.104426. [5] FAIDZI M K, ABDULLAH S, ABDULLAH M F, et al. Computational analysis on the different core configurations for metal sandwich panel under high velocity impact [J]. Soft Computing, 2021, 25(16): 10561–10574. DOI: 10.1007/s00500-021-06015-6. [6] LIU J, ZHENG B L, ZHANG K, et al. Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures [J]. International Journal of Impact Engineering, 2019, 126: 160–171. DOI: 10.1016/j.ijimpeng.2018.12.012. [7] REN J, XU Y X, LIU J X, et al. Effect of strength and ductility on anti-penetration performance of low-carbon alloy steel against blunt-nosed cylindrical projectiles [J]. Materials Science and Engineering: A, 2017, 682: 312–322. DOI: 10.1016/j.msea.2016.11.012. [8] DENG Y F, HU A, XIAO X K, et al. Experimental and numerical investigation on the ballistic resistance of ZK61m magnesium alloy plates struck by blunt and ogival projectiles [J]. International Journal of Impact Engineering, 2021, 158: 104021. DOI: 10.1016/j.ijimpeng.2021.104021. [9] CHOUDHURI D, JANNOTTI P A, MUSKERI S, et al. Ballistic response of a FCC-B2 eutectic AlCoCrFeNi2.1 high entropy alloy [J]. Journal of Dynamic Behavior of Materials, 2019, 5(4): 495–503. DOI: 10.1007/s40870-019-00220-z. [10] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science, 2014, 61: 1–93. DOI: 10.1016/j.pmatsci.2013.10.001. [11] SADEGHILARIDJANI M, MUSKERI S, HASANNAEIMI V, et al. Strain rate sensitivity of a novel refractory high entropy alloy: intrinsic versus extrinsic effects [J]. Materials Science and Engineering: A, 2019, 766: 138326. DOI: 10.1016/j.msea.2019.138326. [12] LI Z Z, ZHAO S T, ALOTAIBI S M, et al. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy [J]. Acta Materialia, 2018, 151: 424–431. DOI: 10.1016/j.actamat.2018.03.040. [13] 张平, 李远田, 张金勇, 等. Si对AlCoCrFeNi高熵合金热腐蚀行为的影响 [J]. 稀有金属材料与工程, 2021, 50(10): 3640–3647.ZHANG P, LI Y T, ZHANG J Y, et al. Effect of Si addition on hot corrosion behavior of AlCoCrFeNi high entropy alloys [J]. Rare Metal Materials and Engineering, 2021, 50(10): 3640–3647. [14] 吴炳乾, 饶湖常, 张冲, 等. Si含量对FeCoCr0.5NiBSi x高熵合金涂层组织结构和耐磨性的影响 [J]. 表面技术, 2015, 44(12): 85–91. DOI: 10.16490/j.cnki.issn.1001-3660.2015.12.014.WU B Q, RAO H C, ZHANG C, et al. Effect of silicon content on the microstructure and wear resistance of FeCoCr0.5NiBSi x high-entropy alloy coatings [J]. Surface Technology, 2015, 44(12): 85–91. DOI: 10.16490/j.cnki.issn.1001-3660.2015.12.014. [15] 王根, 李新梅. 第一性原理计算Cu、Co含量对CoCuFeNi系高熵合金的影响 [J]. 功能材料, 2020, 51(3): 3189–3195. DOI: 10.3969/j.issn.1001-9731.2020.03.029.WANG G, LI X M. Effects of Cu, Co contents on CoCuFeNi system high-entropy alloys by the first principle calculation [J]. Journal of Functional Materials, 2020, 51(3): 3189–3195. DOI: 10.3969/j.issn.1001-9731.2020.03.029. [16] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375/376/377: 213–218. DOI: 10.1016/j.msea.2003.10.257. [17] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. DOI: 10.1002/adem.200300567. [18] TSAI M H, YEH J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107–123. DOI: 10.1080/21663831.2014.912690. [19] DENG Y, TASAN C C, PRADEEP K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Materialia, 2015, 94: 124–133. DOI: 10.1016/j.actamat.2015.04.014. [20] LEI Z F, LIU X J, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563(7732): 546–550. DOI: 10.1038/s41586-018-0685-y. [21] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153–1158. DOI: 10.1126/science.1254581. [22] FU Z Q, JIANG L, WARDINI J L, et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength [J]. Science Advances, 2018, 4(10): eaat8712. DOI: 10.1126/sciadv.aat8712. [23] ZHANG Z J, MAO M M, WANG J W, et al. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi [J]. Nature Communications, 2015, 6: 10143. DOI: 10.1038/ncomms10143. [24] DING Q Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574(7777): 223–227. DOI: 10.1038/s41586-019-1617-1. [25] ZOU Y, MA H, SPOLENAK R. Ultrastrong ductile and stable high-entropy alloys at small scales [J]. Nature Communications, 2015, 6: 7748. DOI: 10.1038/ncomms8748. [26] TANG Y Q, LI D Y. Dynamic response of high-entropy alloys to ballistic impact [J]. Science Advances, 2022, 8(32): eabp9096. DOI: 10.1126/sciadv.abp9096. [27] ANDREOLI A F, HAN X L, KABAN I. In situ studies of non-equilibrium crystallization of Al x CoCrFeNi ( x=0.3, 1) high-entropy alloys [J]. Journal of Alloys and Compounds, 2022, 922: 166209. DOI: 10.1016/j.jallcom.2022.166209. [28] DIAO H Y, MA D, FENG R, et al. Novel NiAl-strengthened high entropy alloys with balanced tensile strength and ductility [J]. Materials Science and Engineering: A, 2019, 742: 636–647. DOI: 10.1016/j.msea.2018.11.055. [29] KIREEVA I V, CHUMLYAKOV Y I, POBEDENNAYA Z V, et al. Effect of V-phase particles on the orientation and temperature dependence of the mechanical behaviour of Al0.3CoCrFeNi high-entropy alloy single crystals [J]. Materials Science and Engineering: A, 2020, 772: 138772. DOI: 10.1016/j.msea.2019.138772. [30] ZHANG J L, QIU R S, TAN X N, et al. The precipitation behavior in Al0.3CoCrFeNi high-entropy alloy affected by deformation and annealing [J]. Metals, 2023, 13(1): 157. DOI: 10.3390/met13010157. [31] YASUDA H Y, SHIGENO K, NAGASE T. Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals [J]. Scripta Materialia, 2015, 108: 80–83. DOI: 10.1016/j.scriptamat.2015.06.022. [32] KIREEVA I V, CHUMLYAKOV Y I, POBEDENNAYA Z V, et al. The orientation dependence of critical shear stresses in Al0.3CoCrFeNi high-entropy alloy single crystals [J]. Technical Physics Letters, 2017, 43(7): 615–618. DOI: 10.1134/S1063785017070082. [33] MUSKERI S, GWALANI B, JHA S, et al. Excellent ballistic impact resistance of Al0.3CoCrFeNi multi-principal element alloy with unique bimodal microstructure [J]. Scientific Reports, 2021, 11(1): 22715. DOI: 10.1038/s41598-021-02209-y. [34] 张荣, 祁文军, 张爽. Al x CoCrFeNi拉伸力学性能的分子动力学模拟 [J]. 钢铁钒钛, 2022, 43(6): 173–179. DOI: 10.7513/j.issn.1004-7638.2022.06.026.ZHANG R, QI W J, ZHANG S. Molecular dynamics simulation of tensile mechanical properties of Al x CoCrFeNi [J]. Iron Steel Vanadium Titanium, 2022, 43(6): 173–179. DOI: 10.7513/j.issn.1004-7638.2022.06.026. [35] 李健, 郭晓璇, 马胜国, 等. AlCrFeCuNi高熵合金力学性能的分子动力学模拟 [J]. 高压物理学报, 2020, 34(1): 011301. DOI: 10.11858/gywlxb.20190762.LI J, GUO X X, MA S G, et al. Mechanical properties of AlCrFeCuNi high entropy alloy: a molecular dynamics study [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 011301. DOI: 10.11858/gywlxb.20190762. [36] 张路明. AlxCoCrFeNi高熵合金力学性能的分子动力学模拟 [D]. 太原: 太原理工大学, 2022.ZHANG L M. Mechanical properties of Al xCoCrFeNi high-entropy alloy: a molecular dynamics study [D]. Taiyuan: Taiyuan University of Technology, 2022. [37] 尹宗军, 苏蓉, 方传智, 等. FeNiCrCoCu高熵合金拉伸行为特征研究: 分子动力学模拟 [J]. 南阳师范学院学报, 2023, 22(3): 29–33. DOI: 10.3969/j.issn.1671-6132.2023.03.005.YIN Z J, SU R, FANG C Z, et al. Study on tensile behavior characteristics of FeNiCrCoCu high entropy alloys: molecular dynamics simulation [J]. Journal of Nanyang Normal University, 2023, 22(3): 29–33. DOI: 10.3969/j.issn.1671-6132.2023.03.005. [38] BARTON N R, BERNIER J V, BECKER R, et al. A multiscale strength model for extreme loading conditions [J]. Journal of Applied Physics, 2011, 109(7): 073501. DOI: 10.1063/1.3553718. [39] HUANG X, DING J, SONG K, et al. Crystal orientation effect on the irradiation mechanical properties and deformation mechanism of α-Fe: molecular dynamic simulations [J]. Journal of Materials Engineering and Performance, 2023, 32(18): 8063–8074. DOI: 10.1007/s11665-022-07730-3. [40] ZHANG Y, YU D J, WANG K M. Atomistic simulation of the orientation-dependent plastic deformation mechanisms of iron nanopillars [J]. Journal of Materials Science & Technology, 2012, 28(2): 164–168. DOI: 10.1016/S1005-0302(12)60037-1. [41] DASH M K, CHIU Y L, JONES I P, et al. Quasi-static compression of shock loaded, single crystal tantalum micropillars [J]. Materials Science and Engineering:A, 2023, 881: 145415. DOI: 10.1016/j.msea.2023.145415. [42] ISLAM A S M J, ISLAM M S, HASAN M S, et al. Anisotropic crystal orientations dependent mechanical properties and fracture mechanisms in zinc blende ZnTe nanowires [J]. RSC Advances, 2023, 13(33): 22800–22813. DOI: 10.1039/D3RA03825D. [43] XU W W, DÁVILA L P. Effects of crystal orientation and diameter on the mechanical properties of single-crystal MgAl2O4 spinel nanowires [J]. Nanotechnology, 2019, 30(5): 055701. DOI: 10.1088/1361-6528/aaef11. [44] SHI K W, CHENG J C, CUI L, et al. Ballistic impact response of Fe40Mn20Cr20Ni20 high-entropy alloys [J]. Journal of Applied Physics, 2022, 132(20): 205105. DOI: 10.1063/5.0130634. [45] QI Y M, XU H M, HE T W, et al. Effect of crystallographic orientation on mechanical properties of single-crystal CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2021, 814: 141196. DOI: 10.1016/j.msea.2021.141196. [46] ZHANG Q, HUANG R R, ZHANG X, et al. Deformation mechanisms and remarkable strain hardening in single-crystalline high-entropy-alloy micropillars/nanopillars [J]. Nano Letters, 2021, 21(8): 3671–3679. DOI: 10.1021/acs.nanolett.1c00444. [47] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. DOI: 10.1006/jcph.1995.1039. [48] FARKAS D, CARO A. Model interatomic potentials for Fe-Ni-Cr-Co-Al high-entropy alloys [J]. Journal of Materials Research, 2020, 35(22): 3031–3040. DOI: 10.1557/jmr.2020.294. [49] JONES J E. On the determination of molecular fields: II. from the equation of state of a gas [J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1924, 106(738): 463–477. DOI: 10.1098/rspa.1924.0082. [50] FAKEN D, JÓNSSON H. Systematic analysis of local atomic structure combined with 3D computer graphics [J]. Computational Materials Science, 1994, 2(2): 279–286. DOI: 10.1016/0927-0256(94)90109-0. [51] HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. The Journal of Physical Chemistry, 1987, 91(19): 4950–4963. DOI: 10.1021/j100303a014. [52] STUKOWSKI A. Structure identification methods for atomistic simulations of crystalline materials [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(4): 045021. DOI: 10.1088/0965-0393/20/4/045021. [53] CORDERO Z C, KNIGHT B E, SCHUH C A. Six decades of the Hall-Petch effect: a survey of grain-size strengthening studies on pure metals [J]. International Materials Reviews, 2016, 61(8): 495–512. DOI: 10.1080/09506608.2016.1191808. [54] DEWAPRIYA M A N, MILLER R E. Energy absorption mechanisms of nanoscopic multilayer structures under ballistic impact loading [J]. Computational Materials Science, 2021, 195: 110504. DOI: 10.1016/j.commatsci.2021.110504. [55] CHENG Y J, DONG J L, LI F C, et al. Scaling law for impact resistance of amorphous alloys connecting atomistic molecular dynamics with macroscale experiments [J]. ACS Applied Materials and Interfaces, 2023, 15(10): 13449–13459. DOI: 10.1021/acsami.2c19719. [56] LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227–230. DOI: 10.1038/nature17981. [57] 叶天舟, 姚欢, 巫英伟, 等. FeCrAl合金拉伸力学性能分子动力学研究 [J]. 稀有金属材料与工程, 2023, 52(2): 777–784. DOI: 10.12442/j.issn.1002-185X.20220441.YE T Z, YAO H, WU Y W, et al. Molecular dynamics study on tensile mechanical properties of FeCrAl alloy [J]. Rare Metal Materials and Engineering, 2023, 52(2): 777–784. DOI: 10.12442/j.issn.1002-185X.20220441. [58] GAO X Z, LU Y P, ZHANG B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Materialia, 2017, 141: 59–66. DOI: 10.1016/j.actamat.2017.07.041. [59] ZHANG D D, ZHANG J Y, KUANG J, et al. Superior strength-ductility synergy and strain hardenability of Al/Ta co-doped NiCoCr twinned medium entropy alloy for cryogenic applications [J]. Acta Materialia, 2021, 220: 117288. DOI: 10.1016/j.actamat.2021.117288. [60] DE COOMAN B C, ESTRIN Y, KIM S K. Twinning-induced plasticity (TWIP) steels [J]. Acta Materialia, 2018, 142: 283–362. DOI: 10.1016/j.actamat.2017.06.046. [61] SUN X H, WU D X, ZOU L F, et al. Dislocation-induced stop-and-go kinetics of interfacial transformations [J]. Nature, 2022, 607(7920): 708–713. DOI: 10.1038/s41586-022-04880-1. [62] GANGIREDDY S, GWALANI B, SONI V, et al. Contrasting mechanical behavior in precipitation hardenable AlXCoCrFeNi high entropy alloy microstructures: single phase FCC vs. dual phase FCC-BCC [J]. Materials Science and Engineering: A, 2019, 739: 158–166. DOI: 10.1016/j.msea.2018.10.021. [63] ZHANG Z R, ZHANG H, TANG Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Materials & Design, 2017, 133: 435–443. DOI: 10.1016/j.matdes.2017.08.022. [64] BHAV S B, SUKUMAR G, PRAKASA R P, et al. Superior ballistic performance of high-nitrogen steels against deformable and non-deformable projectiles [J]. Materials Science and Engineering: A, 2019, 751: 115–127. DOI: 10.1016/j.msea.2019.02.044.