Numerical investigation on attenuation of stress waves in concrete induced by cylindrical cased charge explosion
-
摘要: 基于Kong-Fang混凝土材料模型和LS-DYNA中的多物质ALE算法,开展了CF120混凝土中带壳柱形装药爆炸波衰减规律的数值模拟研究:首先基于已有的柱形装药埋置爆炸试验,对数值算法和材料模型参数进行验证;在此基础上,通过定义长径比系数、壳厚比系数以及峰值应力耦合系数定量分析了装药形状、壳体厚度和埋深对峰值应力的影响规律;最后利用数值模拟数据拟合出混凝土中带壳柱形装药爆炸波峰值应力的计算公式。结果表明,带壳装药爆炸近区,长径比越大,峰值应力越大,远区则相反,且壳体越厚,峰值应力越大,但存在一个阈值;建立的爆炸波峰值应力计算公式可实现对不同长径比、不同壳体厚度和不同装药埋深的带壳柱形装药爆炸波峰值应力的快速预测。Abstract: Based on the Kong-Fang concrete material model and the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) algorithm available in the LS-DYNA, the attenuation law of stress waves in CF120 concrete subjected to cylindrical cased charge explosion was numerically investigated in this paper. Firstly, the numerical algorithm and material model parameters were validated against two sets of cylindrical charge explosion tests. Then a series of fully enclosed and partially buried cylindrical charge explosion numerical models were established, in which different aspect ratios, shell thicknesses, and charge buried depths were considered to analyze the influence of charge shape and shell thickness on stress waves in concrete. Finally, an empirical formula for peak stress of compression wave in concrete induced by cylindrical cased charge explosion was presented based on curve-fitting the numerical data. Numerical results demonstrate that the larger the aspect ratio, the higher the peak stress in the near region, while the opposite law takes on in the far region. Besides, increasing the shell thickness will make the peak stress higher, but there is a threshold. The influence of charge shape, shell thickness, and charge buried depth on the peak stress can be quantified by defining the length-diameter ratio, thickness-diameter ratio, and coupling factor of peak stress. The empirical formula for peak stress of compression wave in concrete is valid for varied aspect ratio, shell thickness, and charge buried depth, which can provide a reliable estimation the peak stress induced by cylindrical cased charge explosion.
-
Key words:
- concrete /
- cylindrical cased charge /
- explosion wave /
- peak stress
-
表 1 柱形装药尺寸
Table 1. Size of cylindrical charge
l/d l/m d/m l/d l/m d/m 1 0.215 0.216 6 0.716 0.118 2 0.346 0.170 8 0.862 0.108 4 0.543 0.136 10 1.000 0.100 表 2 公式(5)参数取值
Table 2. Parameter values in Eq. (5)
l/d k b c l/d k b c 1 0 4 1 6 28.9×10−4 4 0.89 2 3.63×10−4 4 0.98 8 54.5×10−4 4 0.86 4 13.4×10−4 4 0.94 10 93.0×10−4 4 0.82 表 3 公式(6)参数取值
Table 3. Parameter values of Eq. (6)
t/d S n t/d S n 0 58.5 1.39 0.15 67.8 1.39 0.05 63.1 1.39 0.20 69.0 1.39 0.10 65.9 1.39 表 4 壳厚比系数取值
Table 4. Values of γ
t/d 0 0.05 0.10 0.15 0.20 γ 1.00 1.08 1.13 1.16 1.18 表 5 不同相对埋深下的峰值应力耦合系数
$f_0 $ (比例爆距范围0.47~1.0 m/kg1/3)Table 5. Coupling coefficient of peak stress ( f0) at different relative buried depth (Dr) within the range of 0.47−1.0 m/kg1/3
Dr 0.00 0.13 0.25 0.37 0.50 0.63 0.75 0.87 1.00 f0 0.68 0.76 0.81 0.87 0.91 0.94 0.97 0.99 1.00 表 6 不同埋深
$D_{\mathrm{r}} $ 下的壳厚比系数γTable 6. Coeffient of case-thickness to charge-diameter ratio (γ) at different burid depths (Dr)
Dr γ t/d=0 t/d=0.05 t/d=0.10 t/d=0.15 t/d=0.20 0 1 1.14 1.22 1.28 1.28 0.13 1 1.13 1.22 1.28 1.3 0.26 1 1.11 1.19 1.25 1.27 0.37 1 1.10 1.16 1.21 1.23 0.50 1 1.09 1.15 1.19 1.20 0.63 1 1.08 1.13 1.17 1.18 0.75 1 1.08 1.13 1.16 1.17 0.87 1 1.08 1.13 1.16 1.17 1.00 1 1.08 1.13 1.16 1.18 -
[1] 张世豪, 韩晶, 张欣欣, 等. 带壳装药壳体厚度对混凝土爆破毁伤效果的影响 [J]. 爆破, 2013, 30(1): 25–29,34. DOI: 10.3963/j.issn.1001-487X.2013.01.006.ZHANG S H, HAN J, ZHANG X X, et al. Effect of shell thickness of shell charge on explosion and damage effect in concrete [J]. Blasting, 2013, 30(1): 25–29,34. DOI: 10.3963/j.issn.1001-487X.2013.01.006. [2] LOCKING P M, FLYNN D, DUNNETT J. Warhead filling and casing interactions affect the blast field performance [C]//Proceedings of the 24th International Symposium on Ballistics. New Orleans, LA, USA, 2008. [3] 梁斌, 陈忠富, 卢永刚, 等. 不同材料壳体装药对爆破威力影响分析 [J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 429–433. DOI: 10.3969/j.issn.1009-3443.2007.05.005.LIANG B, CHEN Z F, LU Y G, et al. Investigation of blast effect of explosive charge with different shell material [J]. Journal of PLA University of Science and Technology, 2007, 8(5): 429–433. DOI: 10.3969/j.issn.1009-3443.2007.05.005. [4] GRISARO H Y, BENAMOU D, DANCYGIER A N. Investigation of blast and fragmentation loading characteristics–Field tests [J]. Engineering Structures, 2018, 167: 363–375. DOI: 10.1016/j.engstruct.2018.04.013. [5] LI Y, CHEN Z Y, REN X B, et al. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading [J]. International Journal of Impact Engineering, 2020, 142: 103579. DOI: 10.1016/j.ijimpeng.2020.103579. [6] 刘彦, 段卓平, 王新生, 等. 不同厚度壳体装药在混凝土中爆炸的实验研究 [J]. 北京理工大学学报, 2010, 30(7): 771–773,848. DOI: 10.15918/j.tbit1001-0645.2010.07.008.LIU Y, DUAN Z P, WANG X S, et al. Experiments on explosion of explosives with different thickness shells in concretes [J]. Transactions of Beijing Institute of Technology, 2010, 30(7): 771–773,848. DOI: 10.15918/j.tbit1001-0645.2010.07.008. [7] 王新生, 黄风雷, 刘彦, 等. 大长径比带壳装药爆炸毁伤混凝土试验 [J]. 兵工学报, 2009, 30(S2): 251–254.WANG X S, HUANG F L, LIU Y, et al. Experiment on large length-diameter ratio shell charge explosion and damage in concretes [J]. Acta Armamentarii, 2009, 30(S2): 251–254. [8] 张奇, 覃彬, 孙庆云, 等. 战斗部壳体厚度对爆炸空气冲击波的影响 [J]. 弹道学报, 2008, 20(2): 17–19,23.ZHANG Q, QIN B, SUN Q Y, et al. Influence of thickness of warhead shell upon explosive shock wave [J]. Journal of Ballistics, 2008, 20(2): 17–19,23. [9] 李茂, 朱锡, 侯海量, 等. 冲击波和高速破片联合作用下固支方板毁伤效应数值模拟 [J]. 国防科技大学学报, 2017, 39(6): 64–70. DOI: 10.11887/j.cn.201706011.LI M, ZHU X, HOU H L, et al. Numerical simulation of the damage effects of clamped square plate subjected to the impact of blast wave and fragments [J]. Journal of National University of Defense Technology, 2017, 39(6): 64–70. DOI: 10.11887/j.cn.201706011. [10] NYSTRÖM U, GYLLTOFT K. Numerical studies of the combined effects of blast and fragment loading [J]. International Journal of Impact Engineering, 2009, 36(8): 995–1005. DOI: 10.1016/j.ijimpeng.2009.02.008. [11] 苏波, 唐勇, 顾文彬, 等. 带壳装药在多层介质中爆炸的数值模拟研究 [J]. 爆破, 2009, 26(1): 15–18,36. DOI: 10.3963/j.issn.1001-487X.2009.01.004.SU B, TANG Y, GU W B, et al. Numerical simulation of blast effects for charge with case in multi-layer medium [J]. Blasting, 2009, 26(1): 15–18,36. DOI: 10.3963/j.issn.1001-487X.2009.01.004. [12] 孙善政, 卢浩, 李杰, 等. 侵爆作用下混凝土靶破坏效应试验与数值模拟 [J]. 振动与冲击, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026.SUN S Z, LU H, LI J, et al. Tests and numerical simulation for damage effect of concrete target under penetration and explosion [J]. Journal of Vibration and Shock, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026. [13] 梁斌, 陈忠富, 陈小伟. 爆炸载荷对混凝土毁伤效应分析 [J]. 弹箭与制导学报, 2006, 26(3): 104–107. DOI: 10.3969/j.issn.1673-9728.2006.03.034.LAING B, CHEN Z F, CHEN X W. Damage analysis of concrete subject to explosive loading [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(3): 104–107. DOI: 10.3969/j.issn.1673-9728.2006.03.034. [14] 傅学金, 强洪夫, 杨月诚. 固体介质中SPH方法的拉伸不稳定性问题研究进展 [J]. 力学进展, 2007, 37(3): 375–388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.FU X J, QIANG H F, YANG Y C, et al. Advances in the tensile instability of smoothed particle hydrodynamics applied to solid dynamics [J]. Advances in Mechanics, 2007, 37(3): 375–388. DOI: 10.3321/j.issn:1000-0992.2007.03.005. [15] WU C T, WU Y C, CRAWFORD J E, et al. Three-dimensional concrete impact and penetration simulations using the smoothed particle Galerkin method [J]. International Journal of Impact Engineering, 2017, 106: 1–17. DOI: 10.1016/j.ijimpeng.2017.03.005. [16] 王新征, 张松林, 邹广平. 内部短药柱爆炸作用下钢筒破裂特征的数值分析 [J]. 高压物理学报, 2010, 24(1): 61–66. DOI: 10.11858/gywlxb.2010.01.011.WANG X Z, ZHANG S L, ZOU G P. Numerical analysis on fragmentation properties of the steel cylinder subjected to detonation of internal short cylinderical explosive charge [J]. Chinese Journal of High Pressure Physics, 2010, 24(1): 61–66. DOI: 10.11858/gywlxb.2010.01.011. [17] KONG X S, WU W G, LI J, et al. A numerical investigation on explosive fragmentation of metal casing using Smoothed Particle Hydrodynamic method [J]. Materials & Design, 2013, 51: 729–741. DOI: 10.1016/j.matdes.2013.04.041. [18] 李营, 吴卫国, 朱海清, 等. 爆炸冲击波与破片对RC桥的耦合毁伤研究 [J]. 爆破, 2016, 33(2): 142–148. DOI: 10.3963/j.issn.1001-487X.2016.02.028.LI Y, WU W G, ZHU H Q, et al. Damage characteristics of RC bridge under combined effects of blast shock wave and fragments loading [J]. Blasting, 2016, 33(2): 142–148. DOI: 10.3963/j.issn.1001-487X.2016.02.028. [19] 廖南, 洪建, 方秦, 等. 带壳装药爆炸冲击波与破片荷载规律的数值模拟研究 [J]. 防护工程, 2022, 44(6): 7–14. DOI: 10.3969/j.issn.1674-1854.2022.06.002.LIAO N, HONG J, FANG Q, et al. Numerical simulation of the loading law of shock wave and fragment under cased charge blast [J]. Protective Engineering, 2022, 44(6): 7–14. DOI: 10.3969/j.issn.1674-1854.2022.06.002. [20] GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/j.ijimpeng.2023.104491. [21] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006. [22] WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815. [23] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633. [24] MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. DOI: 10.1007/s11831-021-09553-2. [25] 高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J]. Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041. [26] YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860. [27] WILLIAMS E M, GRAHAM S S, AKERS S A, et al. Mechanical properties of a baseline UHPC with and without steel fibers [J]. WIT Transactions on Engineering Sciences, 2009, 64(12): 93–104. DOI: 10.2495/MC090091. [28] REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227. [29] TARVER C M, MCGUIRE E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials: UCRL-JC-145013 [R]. Livermore: Lawrence Livermore National Lab. , 2002. [30] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132. [31] XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 04020146. DOI: 10.1061/(ASCE)ST.1943-541X.0002694. [32] RIGBY S E, OSBORNE C, LANGDON G S, et al. Spherical equivalence of cylindrical explosives: effect of charge shape on deflection of blast-loaded plates [J]. International Journal of Impact Engineering, 2021, 155: 103892. DOI: 10.1016/j.ijimpeng.2021.103892. [33] 方秦, 柳锦春. 地下防护结构 [M]. 北京: 中国水利水电出版社, 2010: 45–47. [34] 李玉节, 张效慈, 汪俊, 等. 带壳有隙TNT炸药包的水下爆炸 [J]. 船舶力学, 2005, 9(3): 118–125. DOI: 10.3969/j.issn.1007-7294.2005.03.012.LI Y J, ZHANG X C, WANG J, et al. Underwater explosion of TNT dynamite with a metal shell and annular gap [J]. Journal of Ship Mechanics, 2005, 9(3): 118–125. DOI: 10.3969/j.issn.1007-7294.2005.03.012.