水雾对RDX粉尘爆炸的抑制作用

胡立双 刘洋 杨亚军 祝贺 梁凯丽 胡双启

胡立双, 刘洋, 杨亚军, 祝贺, 梁凯丽, 胡双启. 水雾对RDX粉尘爆炸的抑制作用[J]. 爆炸与冲击, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346
引用本文: 胡立双, 刘洋, 杨亚军, 祝贺, 梁凯丽, 胡双启. 水雾对RDX粉尘爆炸的抑制作用[J]. 爆炸与冲击, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346
HU Lishuang, LIU Yang, YANG Yajun, ZHU He, LIANG Kaili, HU Shuangqi. Inhibition effect of water mist on RDX dust explosion[J]. Explosion And Shock Waves, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346
Citation: HU Lishuang, LIU Yang, YANG Yajun, ZHU He, LIANG Kaili, HU Shuangqi. Inhibition effect of water mist on RDX dust explosion[J]. Explosion And Shock Waves, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346

水雾对RDX粉尘爆炸的抑制作用

doi: 10.11883/bzycj-2023-0346
基金项目: 国家自然科学基金(52276138);山西省基础研究计划(202203021212160, 20210302123030)
详细信息
    作者简介:

    胡立双(1985- ),男,博士,副教授,hlsly1314@163.com

    通讯作者:

    胡双启(1962- ),男,博士,教授,hsq@nuc.edu.cn

  • 中图分类号: O389; TJ55; X944

Inhibition effect of water mist on RDX dust explosion

  • 摘要: 为研究水雾对RDX粉尘爆炸的抑制作用,自主设计了可视化方管粉尘爆炸水雾抑制系统,选择了不同喷嘴类型、喷孔直径以及雾化压力等实验条件,以RDX粉尘爆炸火焰传播动态、爆炸压力以及爆炸温度等变化,判断不同条件下水雾对RDX粉尘爆炸特性的影响。结果表明:在同一雾化压力下,不同类型喷嘴喷出水雾对RDX粉尘爆炸抑制效果不同,离心喷嘴喷出水雾抑爆效果最好;随着雾化压力增大,水雾对RDX粉尘爆炸抑制作用增强;在实验选用的0.8、1.2、1.5、2.0、2.4 mm五种孔径离心喷嘴中,1.5 mm孔径离心喷嘴喷出水雾抑爆效果最佳,在雾化压力4 MPa下,RDX粉尘爆炸压力仅为0.1184 MPa,相比于无水雾时RDX粉尘爆炸压力0.4561 MPa,压力峰值降低了74.0%,爆炸温度为234 ℃,相比于无水雾时RDX粉尘爆炸温度774 ℃,温度峰值降低了69.8%。
  • 图  1  RDX粒径分布图

    Figure  1.  Particle size distribution of RDX

    图  2  实验系统示意图

    Figure  2.  Diagram of experimental system

    1. Compressor; 2. Gas tank; 3. Pressure gauge; 4. Solenoid valve; 5. Electric spark generator; 6. Temperature acquisition instrument; 7. Pressure acquisition instrument; 8. Water tank; 9. Nitrogen cylinder; 10. Electrode; 11, 12, 13. Spare interface; 14. Thermocouple; 15. Pressure sensor; 16. Explosion chamber; 17. Water mist generation device; 18. Spray nozzle; 19. Bursting disc; 20, 22. Valve; 21. Vacuum gauge; 23. Vacuum connection; 24. Time controller; 25. High speed camera; 26. Computer; 27. Controller; 28. Flame detector; 29. Trigger; 30. Dust nozzle; 31. Connecting flange.

    图  3  4.5 g RDX粉尘爆炸火焰传播图像(单位:ms)

    Figure  3.  Flame propagation of RDX dust explosion (unit: ms)

    图  4  不同质量RDX粉尘爆炸压力变化

    Figure  4.  Pressure diagrams of RDX dust explosion with different masses

    图  5  不同质量RDX粉尘爆炸温度变化

    Figure  5.  Temperature diagrams of RDX dust explosion with different masses

    图  6  不同类型喷嘴

    Figure  6.  Different types of nozzles

    图  7  爆炸压力、温度随雾化压力的变化

    Figure  7.  Pressure and temperature by RDX explosion varied with pressure of the mist

    图  8  不同类型喷嘴下水雾分散情况

    Figure  8.  Water mist dispersion under different nozzles

    图  9  不同孔径、不同雾化压力下水雾对RDX粉尘爆炸压力、温度抑制对比

    Figure  9.  Pressure and temperature suppression of RDX at different apertures and spray pressures

    图  10  不同雾化压力时RDX粉尘爆炸火焰传播

    Figure  10.  Flame propagation of RDX dust explosion under different spray pressures

    图  11  不同雾化压力下RDX爆炸压力曲线

    Figure  11.  Pressure curves of RDX explosion under different spray pressures

    图  12  不同雾化压力下RDX爆炸温度曲线

    Figure  12.  Temperature curves of RDX explosion under different spray pressures

  • [1] 王浩. 火炸药真空干燥工序风险评估及程序研究 [D]. 南京: 南京理工大学, 2019: 1–4. DOI: 10.27241/d.cnki.gnjgu.2019.000609.

    WANG H. Risk evaluation and software study for vacuum drying process of explosives [D]. Nanjing: Nanjing University of Science & Technology, 2019: 1–4. DOI: 10.27241/d.cnki.gnjgu.2019.000609.
    [2] 彭琪琪. GRS固体推进剂生产过程燃爆事故分析与风险控制研究 [D]. 南京: 南京理工大学, 2016: 1–2.

    PENG Q Q. Study on blasting accident analysis and risk control on GRS solid propellant production process [D]. Nanjing: Nanjing University of Science & Technology, 2016: 1–2.
    [3] 陈耀坤, 李亮. 黑索今生产线两次爆炸事故的教训 [J]. 兵工安全技术, 1996(5): 40–42.
    [4] 李晋, 杨斌, 赵树森. 固体推进剂在压延中燃烧的预防和灭火研究 [J]. 中国安全生产科学技术, 2012, 8(8): 58–62. DOI: 10.3969/j.issn.1673-193X.2012.08.010.

    LI J, YANG B, ZHAO S S. Study on fire prevention and extinguishing of solid propellants in manufacture of rolling [J]. Journal of Safety Science and Technology, 2012, 8(8): 58–62. DOI: 10.3969/j.issn.1673-193X.2012.08.010.
    [5] 胡双启, 赵海霞, 何中其. 含能材料安全技术 [M]. 北京: 国防工业出版社, 2020: 168-169.
    [6] KEENAN W A, WAGER P C. Mitigation of confined explosion effects by placing water in proximity of explosions [C]// Proceedings of the 25th DoD Explosives Safety Seminar. Anaheim, CL, USA: Naval Civil Engineering Lab Port Hueneme, 1992: 18–20.
    [7] MARCHAND K A, OSWALD C J. POLCYN M A. Testing and analysis done in support of the development of a container for on-site weapon demilitarization [C]// 27th DOESB Seminar. Las Vegas, 1996: 20–22.
    [8] SHIN Y S, LEE M, LAM K Y, et al. Modeling mitigation effects of watershield on shock waves [J]. Shock and Vibration, 1998, 5(4): 225–234. DOI: 10.1155/1998/782032.
    [9] BUZUKOV A A. Decreasing the parameters of an air shock wave using an air-water curtain [J]. Combustion, Explosion, and Shock Waves, 2000, 36(3): 395–404. DOI: 10.1007/BF02699393.
    [10] TOMOTAKA H, YUTA S, KEI S, et al. Blast mitigation by water in a bag on a tunnel floor [J]. MATEC Web of Conferences, 2018, 192: 02039. DOI: 10.1051/matecconf/201819202039.
    [11] PONTALIER Q, LOISEAU J, GOROSHIN S, et al. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids [J]. Shock Waves, 2018, 28(3): 489–511. DOI: 10.1007/s00193-018-0821-5.
    [12] TAMBA T, SUGIYAMA Y, OHTANI K, et al. Comparison of blast mitigation performance between water layers and water droplets [J]. Shock Waves, 2021, 31(1): 89–94. DOI: 10.1007/s00193-021-00990-3.
    [13] 赵汉中. 在开阔空间中水对爆炸冲击波的削波作用 [J]. 爆炸与冲击, 2001, 21(1): 26–28.

    ZHAO H Z. Water effects on shock wave delay in free fields [J]. Explosion and Shock Waves, 2001, 21(1): 26–28.
    [14] 赵汉中. 在封闭结构中水对爆炸冲击波的削波、减压作用 [J]. 爆炸与冲击, 2002, 22(3): 252–256.

    ZHAO H Z. Water mitigation effects on explosions in confined chambers [J]. Explosion and Shock Waves, 2002, 22(3): 252–256.
    [15] CHEN L, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17–33. DOI: 10.1016/j.ijimpeng.2015.03.003.
    [16] ZHANG L, CHEN L, FANG Q, et al. Mitigation of blast loadings on structures by an anti-blast plastic water wall [J]. Journal of Central South University, 2016, 23(2): 461–469. DOI: 10.1007/s11771-016-3091-3.
    [17] 徐海斌, 王昭, 胡华权, 等. 封闭空间内水层对爆炸载荷特性影响的实验研究 [J]. 兵工学报, 2016, 37(8): 1443–1448. DOI: 10.3969/j.issn.1000-1093.2016.08.015.

    XU H B, WANG Z, HU H Q, et al. Experimental study of air-gap effect on water mitigation of confined explosion [J]. Acta Armamentarii, 2016, 37(8): 1443–1448. DOI: 10.3969/j.issn.1000-1093.2016.08.015.
    [18] 徐海斌, 钟方平, 杨军, 等. 水及盛水容器对近距离爆炸载荷影响的实验研究 [J]. 爆炸与冲击, 2016, 36(4): 525–531. DOI: 10.11883/1001-1455(2016)04-0525-07.

    XU H B, ZHONG F P, YANG J, et al. Experimental study for effects of water and its container on explosion loading near explosive [J]. Explosion and Shock Waves, 2016, 36(4): 525–531. DOI: 10.11883/1001-1455(2016)04-0525-07.
    [19] 徐海斌. 水对封闭空间爆炸载荷的消减效果及影响机理 [D]. 合肥: 中国科学技术大学, 2020: 37–58. DOI: 10.27517/d.cnki.gzkju.2020.000184.

    XU H B. Mechanism and effect of water mitigation on confined explosion loading [D]. Hefei: University of Science and Technology of China, 2020: 37–58. DOI: 10.27517/d.cnki.gzkju.2020.000184.
    [20] XU H B, CHEN L K, ZHANG D Z, et al. Mitigation effects on the reflected overpressure of blast shock with water surrounding an explosive in a confined space [J]. Defence Technology, 2021, 17(3): 1071–1080. DOI: 10.1016/j.dt.2020.06.026.
  • 加载中
图(12)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  76
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-12-01
  • 网络出版日期:  2024-01-22
  • 刊出日期:  2024-05-08

目录

    /

    返回文章
    返回