半封闭空间内氢化镁粉尘爆炸火焰的传播特性

毛文哲 张国涛 杨帅帅 徐子晖 王燕 纪文涛

毛文哲, 张国涛, 杨帅帅, 徐子晖, 王燕, 纪文涛. 半封闭空间内氢化镁粉尘爆炸火焰的传播特性[J]. 爆炸与冲击, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363
引用本文: 毛文哲, 张国涛, 杨帅帅, 徐子晖, 王燕, 纪文涛. 半封闭空间内氢化镁粉尘爆炸火焰的传播特性[J]. 爆炸与冲击, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363
MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363
Citation: MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363

半封闭空间内氢化镁粉尘爆炸火焰的传播特性

doi: 10.11883/bzycj-2023-0363
基金项目: 国家自然科学基金(52374197, U22A20120);河南省优秀青年科学基金(212300410042)
详细信息
    作者简介:

    毛文哲(1998- ),男,硕士研究生,kane_0529@163.com

    通讯作者:

    纪文涛(1989- ),男,博士,副教授,jiwentao@hpu.edu.cn

  • 中图分类号: O381

Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space

  • 摘要: 在自行搭建的5 L粉尘爆炸火焰传播特性实验装置中,实验研究了半封闭空间内氢化镁(MgH2)粉尘爆炸火焰的传播特性。实验结果表明:随MgH2粉尘浓度的提高,MgH2粉尘爆炸火焰由点火至稳定传播所用时间先缩短后延长以及预热区宽度先减小后增大,火焰亮度、锋面平滑度、及火焰传播速度呈先提高后降低的趋势,并在质量浓度为800 g/m3时呈最佳燃烧状态。不同浓度的MgH2粉尘爆炸火焰传播瞬时速度整体呈波动趋势,波动幅度随浓度的提高而先减小后增大,800 g/m3时波动幅度最小,瞬时传播速度变化趋势随浓度的变化呈现不同的变化趋势。最后,根据MgH2爆炸产物的XRD测试结果,分析MgH2粉尘爆炸反应机理,发现MgH2粉尘爆炸是以MgH2燃烧反应为主并伴随有MgH2和Mg(OH)2分解以及Mg和H2氧化等多个总包反应的复杂过程,爆炸反应的最终产物为MgO。
  • 图  1  5 L粉尘爆炸火焰传播特性实验装置

    Figure  1.  The experimental device with a 5-L powder container for exploring dust explosion flame propagation characteristics

    图  2  MgH2粉尘粒径分布与微观形貌

    Figure  2.  MgH2 dust particle size distribution and micromorphology

    图  3  不同质量浓度的MgH2粉尘爆炸压力和压升速率

    Figure  3.  Explosion pressure and pressure rise rate of MgH2 dust as a function of dust mass concentration

    图  4  半封闭空间内200 g/m3 MgH2粉尘火焰形貌结构

    Figure  4.  Morphological structure of 200 g/m3 MgH2 dust flame in a semi-enclosed space

    图  5  半封闭空间内400 g/m3 MgH2粉尘火焰形貌结构

    Figure  5.  Morphological structure of 400 g/m3 MgH2 dust flame in a semi-enclosed space

    图  6  半封闭空间内600 g/m3 MgH2粉尘火焰形貌结构

    Figure  6.  Morphological structure of 600 g/m3 MgH2 dust flame in a semi-enclosed space

    图  7  半封闭空间内800 g/m3 MgH2粉尘火焰形貌结构

    Figure  7.  Morphological structure of 800 g/m3 MgH2 dust flame in a semi-enclosed space

    图  8  半封闭空间内1000 g/m3 MgH2粉尘火焰形貌结构

    Figure  8.  Morphological structure of 1000 g/m3 MgH2 dust flame in a semi-enclosed space

    图  9  MgH2爆炸火焰结构

    Figure  9.  MgH2 explosive flame structure

    图  10  半封闭空间内不同浓度MgH2粉尘爆炸火焰锋面位置

    Figure  10.  Location of flame fronts of explosion flames with different concentrations of MgH2 dust in a semi-enclosed space

    图  11  半封闭空间内不同浓度MgH2粉尘爆炸火焰锋面瞬时速度

    Figure  11.  Instantaneous velocity of flame fronts of explosion flames of different concentrations of MgH2 dust in a semi-enclosed space

    图  12  MgH2爆炸产物XRD图

    Figure  12.  XRD diagram of MgH2 explosive products

    图  13  MgH2燃烧反应机理

    Figure  13.  Combustion reaction mechanism of MgH2

  • [1] 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展 [J]. 天然气工业, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.02.

    ZHOU S H, WANG J, LIANG Y. Development of China’s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality [J]. Natural Gas Industry, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.02.
    [2] 孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略 [J]. 天然气工业, 2022, 42(4): 156–179. DOI: 10.3787/j.issn.1000-0976.2022.04.015.

    MENG X Y, CHEN M Y, GU A L, et al. China’s hydrogen development strategy in the context of double carbon targets [J]. Natural Gas Industry, 2022, 42(4): 156–179. DOI: 10.3787/j.issn.1000-0976.2022.04.015.
    [3] TU H L. Hydrogen energy: a global trend and China’s strategy [J]. Engineering, 2021, 7(6): 703. DOI: 10.1016/j.eng.2021.04.006.
    [4] YANG Z H, WANG Z R, CAO X J, et al. Influences of concentration gradients and ignition positions on unconfined inhomogeneous hydrogen explosion [J]. International Journal of Hydrogen Energy, 2024, 50: 857–69. DOI: 10.1016/j.ijhydene.2023.07.209.
    [5] 刘翠伟, 裴业斌, 韩辉, 等. 氢能产业链及储运技术研究现状与发展趋势 [J]. 油气储运, 2022, 41(5): 498–514. DOI: 10.6047/j.issn.1000-8241.2022.05.002.

    LlU C W, PEl Y B, HAN H, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologie [J]. Oil & Gas Storage and Transportation, 2022, 41(5): 498–514. DOI: 10.6047/j.issn.1000-8241.2022.05.002.
    [6] LIU Y F, ZHANG W X, ZHANG X, et al. Nanostructured light metal hydride: fabrication strategies and hydrogen storage performance [J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113560. DOI: 10.1016/j.rser.2023.113560.
    [7] CORGNALE C, HARDY B, MOTYKA T, et al. Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants [J]. Renewable and Sustainable Energy Reviews, 2014, 38: 821–833. DOI: 10.1016/j.rser.2014.07.049.
    [8] HUANG Z G, GUO Z P, CALKA A, et al. Noticeable improvement in the desorption temperature from graphite in rehydrogenated MgH2/graphite composite [J]. Materials Science and Engineering: A, 2007, 447(1/2): 180–185. DOI: 10.1016/j.msea.2006.11.074.
    [9] LIU L L, LI J, ZHANG L Y, et al. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant [J]. Journal of Hazardous Materials, 2018, 342: 477–481. DOI: 10.1016/j.jhazmat.2017.08.055.
    [10] MARKMAN E, LUZZATTO-SHUKRUN L, LEVY Y S, et al. Effect of additives on hydrogen release reactivity of magnesium hydride composites [J]. International Journal of Hydrogen Energy, 2022, 47(73): 31381–31394. DOI: 10.1016/j.ijhydene.2022.07.025.
    [11] SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: a review [J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121–1140. DOI: 10.1016/j.ijhydene.2006.11.022.
    [12] 赵金钢, 李玉艳, 刘大斌, 等. 氢化镁对金属混合物最小点火能的影响 [J]. 含能材料, 2018, 26(5): 422–425. DOI: 10.11943/j.issn.1006-9941.2018.05.008.

    ZHAO J G, LI Y Y, LIU D B, et al. Effect of magnesium hydride on the minimum ignition energy of metal mixture [J]. Chinese Journal of Energetic Materials, 2018, 26(5): 422–425. DOI: 10.11943/j.issn.1006-9941.2018.05.008.
    [13] TSAI Y T, HUANG G T, ZHAO J Q, et al. Dust cloud explosion characteristics and mechanisms in MgH2‐based hydrogen storage materials [J]. AIChE Journal, 2021, 67(8): e17302. DOI: 10.1002/aic.17302.
    [14] WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials [J]. Defence Technology, 2021, 17(4): 1262–1268. DOI: 10.1016/j.dt.2020.06.011.
    [15] ZHANG Q W, CHENG Y F, ZHANG B B, et al. Deflagration characteristics of freely propagating flames in magnesium hydride dust clouds [J]. Defence Technology, 2024, 31: 471–83. DOI: 10.1016/j.dt.2023.03.003.
    [16] 郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究 [D]. 重庆: 重庆大学, 2017.

    ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methanedeflagration in ducts [D]. Chongqing: Chongqing University, 2017.
    [17] 徐在龙. 封闭空间中火焰加速产生压力波及火焰—压力波相互作用的研究 [D]. 天津: 天津大学, 2020.

    XU Z L. Fundamental study of flame acceleration generating pressure wave and flame-pressure wave interaction in confined space [D]. Tianjin: Tianjin University, 2020.
    [18] WEI H Q, XU Z L, ZHOU L, et al. Effect of initial pressure on flame–shock interaction of hydrogen–air premixed flames [J]. International Journal of Hydrogen Energy, 2017, 42(17): 12657–12668. DOI: 10.1016/j.ijhydene.2017.03.099.
    [19] 陈刚, 张晓蕾, 徐帅, 等. 我国2005—2020年粉尘爆炸事故统计分析 [J]. 中国安全科学学报, 2022, 32(8): 76–83. DOI: 10.16265/j.cnki.issn1003-3033.2022.08.0812.

    CHEN G, ZHANG X L, XU S, et al. Statistical analysis on dust explosion accidents in China from 2005 to 2020 [J]. China Safety Science Journal, 2022, 32(8): 76–83. DOI: 10.16265/j.cnki.issn1003-3033.2022.08.0812.
    [20] 王伟, 刘志云, 崔福庆, 等. 1981~2020年我国较大及以上危化品事故统计分析与对策研究 [J]. 应用化工, 2021, 50(8): 2187–2193. DOI: 10.16581/j.cnki.issn1671-3206.20210531.001.

    WANG W, LIU Z Y, CUI F Q, et al. Statistical analysis and countermeasures of large and above chemical accidents in China during 1981–2020 [J]. Applied Chemical Industry, 2021, 50(8): 2187–2193. DOI: 10.16581/j.cnki.issn1671-3206.20210531.001.
    [21] 鲁征, 傅贵, 薛忠智. 天津港“8·12”危险品仓库火灾爆炸事故行为原因研究 [J]. 灾害学, 2017, 32(1): 205–211. DOI: 10.3969/j.issn.1000-811X.2017.01.036.

    LU Z, FU G, XUE Z Z. Research on behavioral causes of a fire and explosion accident of 8·12 in Tianjin port [J]. Journal of Catastrophology, 2017, 32(1): 205–211. DOI: 10.3969/j.issn.1000-811X.2017.01.036.
    [22] 黄沿波, 刘铁梅. 化工园区安全管理技术策略 [J]. 灾害学, 2014, 29(1): 172–176. DOI: 10.3969/j.issn.1000-811X.2014.01.031.

    HUANG Y B, LIU T M. Strategy on safety management technology of chemical industry park [J]. Journal of Catastrophology, 2014, 29(1): 172–176. DOI: 10.3969/j.issn.1000-811X.2014.01.031.
    [23] XIONG X Y, GAO K, MU J, et al. Study on explosion characteristic parameters and induction mechanism of magnesium powder/hydrogen hybrids [J]. Fuel, 2022, 326: 125077. DOI: 10.1016/j.fuel.2022.125077.
    [24] CASHDOLLAR K L, ZLOCHOWER I A. Explosion temperatures and pressures of metals and other elemental dust clouds [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 337–348. DOI: 10.1016/j.jlp.2007.04.018.
    [25] IMAMURA H, MASANARI K, KUSUHARA M, et al. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling [J]. Journal of Alloys and Compounds, 2005, 386(1/2): 211–216. DOI: 10.1016/j.jallcom.2004.04.145.
  • 加载中
图(13)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  53
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-08
  • 修回日期:  2024-03-05
  • 网络出版日期:  2024-03-05
  • 刊出日期:  2024-06-18

目录

    /

    返回文章
    返回