Underwater anti-explosion mechanism and damage grade prediction of different corrugated steel-concrete slab composite structures
-
摘要: 为探究不同波纹钢-混凝土板复合结构的水下抗爆机理,采用光滑粒子流体动力学与有限单元(FEM-SPH)耦合方法模拟混凝土板在水下接触爆炸下的损伤过程,并与试验结果对比,以验证数值方法的有效性;采用FEM-SPH方法探究不同防护方案下墙面板毁伤过程及失效模式,揭示其水下防爆机理,并构建出墙面板损伤等级预测曲线。研究结果表明:模拟结果与试验结果较为吻合,验证了模拟方法的有效性;在含12 mm厚波纹钢的复合结构(T-12)、含75°夹角的波纹钢复合结构(A-75)和含厚70 mm波纹钢的复合结构(WH-70)三种防护方案下,墙面板的毁伤范围较未加固墙面板最大降幅分别为83.0%、81.6%和82.5%;预测曲线可以直观评估出炸药量和复合结构中波纹钢波高变化对墙面板损伤等级的影响。
-
关键词:
- 波纹钢-混凝土板复合结构 /
- 毁伤演化特征 /
- 水下抗爆机理 /
- 损伤等级预测
Abstract: In order to explore the underwater anti-explosion mechanism of different corrugated steel-concrete slab composite structures, the damage process of concrete slab under underwater contact explosion was simulated by smoothed particle hydrodynamics and finite element method (FEM-SPH), and the validity of the numerical method was verified by comparing with the experimental results. The FEM-SPH method was used to explore the damage process and failure mode of the wall panel under different protection schemes, to reveal the underwater explosion-proof mechanism, and to construct the prediction curve of the damage grade of the wall panel. The results show that the simulation results are in good agreement with the experimental results, which verifies the effectiveness of the simulation method. Under different protection schemes, the damage range of the wall panel with 12 mm thick corrugated steel composite structure (T-12), 75o angle corrugated steel composite structure (A-75) and 70 mm corrugated steel composite structure (WH-70) is 83%, 81.6% and 82.5% lower than that of the unreinforced wall panel, respectively. In the composite structure, the explosion shock wave propagates to the corrugated steel in the form of incident wave and then propagates in the structure in the form of transmitted wave and reflected wave. When the transmitted wave reaches the lower surface of the corrugated steel, part of the shock wave will continue to propagate to the wall panel, while the remaining shock wave is reflected to form reflected longitudinal wave and reflected transverse wave, which further attenuates the transmitted shock wave acting on the wall panel to achieve the effect of wave clipping and energy absorption. The prediction curve can directly evaluate the influence of explosive amount and wave height change of corrugated steel in composite structure on the damage grade of wall panel. -
表 1 炸药材料参数
Table 1. Material parameters of the explosive
ρ1/(g·cm−3) A1/MPa B1/MPa R1 R2 ω1 1.63 373.77 3.75 4.15 0.9 0.35 表 2 水体材料参数
Table 2. Material parameters of water
ρ2/(g·cm−3) c/(m·s−1) S1 S2 S3 γ0 a 1.0 2417 1.41 0 0 1.0 0 表 3 钢筋材料参数
Table 3. Material parameters corrugated steel
ρ3/(g·cm−3) A2/GPa B2/GPa N C m Tm 7.85 0.345 0.336 0.42 0.026 1.4 1720 注:A2、B2、N为参考应变率$ {\dot{\varepsilon }}_{0} $和参考温度$ {T}_{\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{m}} $下的材料初始屈服应力、应变硬化模量和硬化指数,C为材料应变率强化参数,m为材料热软化参数,$ {T}_{\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{m}} $为室温,$ {T}_{\mathrm{m}\mathrm{e}\mathrm{l}\mathrm{t}} $为熔点。 表 4 墙面板背爆面剥落区
Table 4. Spalling area of back surface of wall panel
方案 最大直径/mm 最大宽度/mm 方案 最大直径/mm 最大宽度/mm 方案 最大直径/mm 最大宽度/mm T-3 221 180 A-30 285 154 WH-10 281 251 T-6 210 151 A-45 221 180 WH-30 241 220 T-9 191 130 A-60 211 131 WH-50 221 180 T-12 180 100 A-75 185 105 WH-70 181 105 注:未加固结构剥落区的最大直径和最大宽度分别为330和320 mm。 -
[1] 许迎亮, 刘彦, 闫俊伯, 等. 双装药同步爆炸钢筋混凝土梁毁伤效应 [J]. 兵工学报, 2023, 44(12): 3719–3732. DOI: 10.12382/bgxb.2023.0286.XU Y L, LIU Y, YAN J B, et al. The damage effect of reinforced concrete beams subjected to synchronous explosion of double charges [J]. Acta Armamentarii, 2023, 44(12): 3719–3732. DOI: 10.12382/bgxb.2023.0286. [2] 赵小华, 刘树参, 方宏远, 等. 水下接触爆炸下高聚物层对钢筋混凝土板的防护效果 [J]. 爆炸与冲击, 2023, 43(12): 125102. DOI: 10.11883/bzycj-2023-0033.ZHAO X H, LIU S S, FANG H Y, et al. Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion [J]. Explosion and Shock Waves, 2023, 43(12): 125102. DOI: 10.11883/bzycj-2023-0033. [3] 杨坤, 张玮, 李营, 等. 水下爆炸作用下复合材料圆柱壳结构失效模式分析 [J]. 中国舰船研究, 2023, 18(2): 55–63. DOI: 10.19693/j.issn.1673-3185.02835.YANG K, ZHANG W, LI Y, et al. Failure mode analysis of composite cylindrical shell structure under underwater explosion [J]. Chinese Journal of Ship Research, 2023, 18(2): 55–63. DOI: 10.19693/j.issn.1673-3185.02835. [4] 杨谨鸿, 李秀地, 张波, 等. 近距离爆炸下ECC涂层加固砌体填充墙抗爆性能研究 [J]. 振动与冲击, 2023, 42(16): 10–18. DOI: 10.13465/j.cnki.jvs.2023.16.002.YANG J H, LI X D, ZHANG B, et al. Anti-explosion performance of ECC coating for strengthening masonry infilled wall under close-in explosion [J]. Journal of Vibration and Shock, 2023, 42(16): 10–18. DOI: 10.13465/j.cnki.jvs.2023.16.002. [5] 廖维张, 刘锴鑫, 张春磊, 等. 高强钢丝绳网片-聚合物砂浆加固RC板抗爆性能试验研究 [J]. 振动与冲击, 2021, 40(2): 235–242. DOI: 10.13465/j.cnki.jvs.2021.02.032.LIAO W Z, LIU K X, ZHANG C L, et al. Blast resistant performance of reinforced concrete slabs strengthened with high strength steel wire mesh and polymer mortar [J]. Journal of Vibration and Shock, 2021, 40(2): 235–242. DOI: 10.13465/j.cnki.jvs.2021.02.032. [6] ZHAO C J, TANG Z X, WANG P, et al. Blast responses of shallow-buried prefabricated modular concrete tunnels reinforced by BFRP-steel bars [J]. Underground Space, 2022, 7(2): 184–198. DOI: 10.1016/J.UNDSP.2021.07.004. [7] YANG G D, WANG G H, LU W B, et al. Cross-section shape effects on anti-knock performance of RC columns subjected to air and underwater explosions [J]. Ocean Engineering, 2019, 181: 252–266. DOI: 10.1016/j.oceaneng.2019.04.031. [8] ZHAO X H, WANG G H, LU W B, et al. Damage features of RC slabs subjected to air and underwater contact explosions [J]. Ocean Engineering, 2018, 147: 531–545. DOI: 10.1016/j.oceaneng.2017.11.007. [9] 吕晋贤, 吴昊, 方秦. 爆炸作用下高层框架结构倒塌分析与设计建议 [J]. 建筑结构学报, 2023, 44(11): 114–128. DOI: 10.14006/j.jzjgxb.2022.0454.LÜ J X, WU H, FANG Q. Collapse analysis and design recommendations of high-rise frame structures under blast loadings [J]. Journal of Building Structures, 2023, 44(11): 114–128. DOI: 10.14006/j.jzjgxb.2022.0454. [10] ELVELI B S, VESTRUM O, HAUGE K O, et al. Thin steel plates exposed to combined ballistic impact and partially confined airblast loading [J]. Engineering Failure Analysis, 2023, 144: 106943. DOI: 10.1016/J.ENGFAILANAL.2022.106943. [11] LAI J Z, LI H J, YIN X X, et al. Properties and simulation of UHPC and FGCC subjected to the coupling of penetration and explosion [J]. Journal of Materials in Civil Engineering, 2021, 33(6): 04021109. DOI: 10.1061/(ASCE)MT.1943-5533.0003665. [12] 杨建华, 吴泽南, 姚池, 等. 地应力对岩石爆破开裂及爆炸地震波的影响研究 [J]. 振动与冲击, 2020, 39(13): 64–70,90. DOI: 10.13465/j.cnki.jvs.2020.13.010.YANG J H, WU Z N, YAO C, et al. Influences of in-situ stress on blast-induced rock fracture and seismic waves [J]. Journal of Vibration and Shock, 2020, 39(13): 64–70,90. DOI: 10.13465/j.cnki.jvs.2020.13.010. [13] CUI Y, LI Z J, FANG J, et al. Crater effects of shallow burial explosions in soil based on SPH-FEM analysis [J]. Frontiers in Earth Science, 2023, 10: 1114178. DOI: 10.3389/FEART.2022.1114178. [14] PAN G C, SU H, LI X X, et al. Coupled FEM-SPH simulation of the protective properties for metal/ceramic composite armor [J]. International Journal of Lightweight Materials and Manufacture, 2023, 6(4): 543–551. DOI: 10.1016/J.IJLMM.2023.05.007. [15] WANG Z L, HUANG Y P, LI S Y, et al. SPH-FEM coupling simulation of rock blast damage based on the determination and optimization of the RHT model parameters [J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(4): 042035. DOI: 10.1088/1755-1315/570/4/042035. [16] ZHAO X H, WANG G H, LU W B, et al. Experimental investigation of RC slabs under air and underwater contact explosions [J]. European Journal of Environmental and Civil Engineering, 2021, 25(1): 190–204. DOI: 10.1080/19648189.2018.1528892. [17] ZHAO C F, LU X, WANG Q, et al. Experimental and numerical investigation of steel-concrete (SC) slabs under contact blast loading [J]. Engineering Structures, 2019, 196: 109337. DOI: 10.1016/j.engstruct.2019.109337. [18] ZHAO C F, HE K C, ZHI L H, et al. Blast behavior of steel-concrete-steel sandwich panel: experiment and numerical simulation [J]. Engineering Structures, 2021, 246: 112998. DOI: 10.1016/J.ENGSTRUCT.2021.112998. [19] XU Q, CHEN J Y, LI J, et al. Numerical study on antiknock measures of concrete gravity dam bearing underwater contact blast loading [J]. Journal of Renewable and Sustainable Energy, 2018, 10(1): 014101. DOI: 10.1063/1.4986330. [20] HAI L, REN X D. Computational investigation on damage of reinforced concrete slab subjected to underwater explosion [J]. Ocean Engineering, 2020, 195: 106671. DOI: 10.1016/j.oceaneng.2019.106671. [21] 李超. 柱面网壳结构在内爆炸下的失效机理和防爆方法 [D]. 泉州: 华侨大学, 2016.LI C. Study on failure mechanism and explosion-proof method for cylindrical shell under internal explosion [D]. Quanzhou: Huaqiao University, 2016. [22] ZHOU X Q, HAO H. Numerical prediction of reinforced concrete exterior wall response to blast loading [J]. Advances in Structural Engineering, 2008, 11(4): 355–367. DOI: 10.1260/136943308785836826. [23] LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014, 68: 41–55. DOI: 10.1016/j.ijimpeng.2014.02.001.