Interfacial microstructure characteristics and dynamic mechanical properties of TA2/AZ31B/2024Al explosively-welded composite plates
-
摘要: 运用平行法爆炸焊接工艺,开展了TA2/AZ31B/2024Al多层轻质金属板材爆炸焊接实验。通过扫描电镜、电子背散射衍射、分离式霍普金森压杆及三维轮廓扫描等测试技术,对多层爆炸焊接复合板界面微观结构特征、材料物相变化规律、复合板材动态力学性能及材料冲击断口特征开展了系统研究。研究结果表明:焊后多层轻质金属复合板的4个焊接界面均呈现出爆炸焊接特有的波形结构特征,结合界面处无明显缺陷,总体焊接质量良好。结合界面处晶粒发生细化并形成细晶区,1060Al过渡层内晶粒组织由于强塑性变形呈现典型的拉长层状晶粒特征,4个结合界面处均出现明显的变形织构与再结晶织构特征。沿X方向的试样最大动态抗压强度达605 MPa,分层断口界面三维形貌呈现近似水面波纹的独特结构特征。沿Z方向的试样最大动态抗压强度达390 MPa,断口界面三维形貌呈现明显的纤维状韧性断裂特征。Abstract: In recent years, with the rapid development of technology and equipment in the fields of aerospace, defense, and military industries, multilayer lightweight metal composite materials have attracted widespread attention to face complex service environments and reduce equipment weight. Titanium, aluminum, magnesium, and other lightweight metals and their alloys have advantages such as high specific strength, high specific elastic modulus, high damping and shock absorption, high electrostatic shielding, and high machinability, making them the most promising lightweight metal materials for application. In this study, the explosive welding experiments of TA2/AZ31B/2024Al multilayer light metal plate were carried out using a parallel explosive-welding process. Using scanning electron microscopy, electron backscatter diffraction, split Hopkinson pressure bar, and three-dimensional contour scanning, the interfacial microstructure characteristics, material phase changes, dynamic mechanical properties, and impact fracture characteristics of multilayer explosive welded composite plates were studied systematically. The results indicate that the four joining interfaces of the multilayer lightweight metal composite plate after welding present unique waveform structure characteristics of explosive welding, and there are no obvious defects at the joining interfaces. The overall welding quality is good. The grain refinement occurs at the joining interfaces and forms the fine grain region. The grain structure in the 1060Al transition layer exhibits typical elongated layered grain characteristics due to strong plastic deformation, and deformation texture and recrystallization texture characteristics appear at all four joining interfaces. The maximum dynamic compressive strength of the sample along the X-direction is 605 MPa, and the three-dimensional morphology of the fracture interface presents unique structural features similar to the water ripples. The maximum dynamic compressive strength of the sample along the Z-direction is 390 MPa, and the three-dimensional morphology of the fracture interface presents fibrous ductile fracture characteristics. Due to the different wave impedance of the metals, the delamination failure occurs in the X-direction sample, which is caused by the shear stress between the Al/Mg joining interfaces. Since the strength of 1060Al is lower than that of other metals, the Z-direction sample is first destroyed from the 1060Al layer, and slip shear fracture occurs along the 45° direction.
-
表 1 金属板材的物理尺寸及板间间隙
Table 1. Physical dimensions of metal plates and gaps between metal plates
板材位置 材料 物理尺寸/mm 板间间隙/mm 第1层(飞板) TA2 800×400×4 6
3
3
5第2层(过渡层) 1060Al 800×400×1 第3层(中间板) AZ31B 700×350×3 第4层(过渡层) 1060Al 800×400×1 第5层(基板) 2024Al 800×400×10 表 2 X方向试样在不同速度冲击后的变形量
Table 2. Deformation of the X-direction samples after impact at different velocities
试样 冲击速度/(m·s−1) 初始高度/mm 压缩后高度/mm 1-1 10.195 10 9.74 1-2 13.421 10 9.53 1-3 15.767 10 9.33 1-4 18.268 10 8.84 1-5 20.145 10 8.72 1-6 22.045 10 8.49 1-7 27.247 10 7.93 1-8 30.506 10 7.73 1-9 33.025 10 分层断裂 1-10 36.252 10 分层断裂 表 3 Z方向试样在不同速度冲击后的变形量分析
Table 3. Analysis of the deformation of the Z-direction samples after impact at different velocities
试样 冲击速度/(m·s−1) 初始高度/mm 压缩后高度/mm 2-1 10.588 10 9.62 2-2 13.466 10 9.32 2-3 15.807 10 8.98 2-4 18.135 10 8.68 2-5 20.000 10 8.47 2-6 21.920 10 断裂 2-7 26.925 10 断裂 -
[1] 王群, 王婧超, 李雄魁, 等. 航天用轻质结构材料研究进展及应用需求 [J]. 宇航材料工艺, 2017, 47(1): 1–4. DOI: 10.12044/j.issn.1007-2330.2017.01.001.WANG Q, WANG J C, LI X K, et al. Research progress and application requirements of lightweight structure materials for aerospace applications [J]. Aerospace Materials and Technology, 2017, 47(1): 1–4. DOI: 10.12044/j.issn.1007-2330.2017.01.001. [2] 郑超, 朱秀荣, 王军, 等. 装甲钛合金的研究与应用现状 [J]. 钛工业进展, 2020, 37(4): 41–48. DOI: 10.13567/j.cnki.issn1009-9964.2020.04.012.ZHENG C, ZHU X R, WANG J, et al. Review on investigation and application of titanium armors [J]. Titanium Industry Progress, 2020, 37(4): 41–48. DOI: 10.13567/j.cnki.issn1009-9964.2020.04.012. [3] 肖文龙, 付雨, 王俊帅, 等. 高强度高弹性钛合金的研究进展 [J]. 航空材料学报, 2020, 40(3): 11–24. DOI: 10.11868/j.issn.1005-5053.2020.000085.XIAO W L, FU Y, WANG J S, et al. Recent development in titanium alloys with high strength and high elasticity [J]. Journal of Aeronautical Materials, 2020, 40(3): 11–24. DOI: 10.11868/j.issn.1005-5053.2020.000085. [4] 赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展 [J]. 中国材料进展, 2020, 39(7): 527–534. DOI: 10.7502/j.issn.1674-3962.202006025.ZHAO Y Q, GE P, XIN S W. Progresses of R&D on Ti-alloy materials in recent 5 years [J]. Materials China, 2020, 39(7): 527–534. DOI: 10.7502/j.issn.1674-3962.202006025. [5] 臧金鑫, 陈军洲, 韩凯, 等. 航空铝合金研究进展与发展趋势 [J]. 中国材料进展, 2022, 41(10): 769–777. DOI: 10.7502/j.issn.1674-3962.202207020.ZANG J X, CHEN J Z, HAN K, et al. Research progress and development tendency of aeronautical aluminum alloys [J]. Materials China, 2022, 41(10): 769–777. DOI: 10.7502/j.issn.1674-3962.202207020. [6] 熊柏青, 闫宏伟, 张永安, 等. 我国航空铝合金产业发展战略研究 [J]. 中国工程科学, 2023, 25(1): 88–95. DOI: 10.15302/J-SSCAE-2023.01.005.XIONG B Q, YAN H W, ZHANG Y A, et al. Development strategy for the aviation-grade aluminum alloy industry in China [J]. Strategic Study of CAE, 2023, 25(1): 88–95. DOI: 10.15302/J-SSCAE-2023.01.005. [7] 管仁国, 娄花芬, 黄晖, 等. 铝合金材料发展现状、趋势及展望 [J]. 中国工程科学, 2020, 22(5): 68–75. DOI: 10.15302/J-SSCAE-2020.05.013.GUAN R G, LOU H F, HUANG H, et al. Development of aluminum alloy materials: current status, trend, and prospects [J]. Strategic Study of CAE, 2020, 22(5): 68–75. DOI: 10.15302/J-SSCAE-2020.05.013. [8] 李杨, 胡红军, 钟韬, 等. 铝/镁双金属复合成形技术的研究现状及发展趋势 [J]. 材料热处理学报, 2022, 43(12): 1–9. DOI: 10.13289/j.issn.1009-6264.2022-0191.LI Y, HU H J, ZHONG T, et al. Research status and development trend of aluminum/magnesium bimetal composite forming technology [J]. Transactions of Materials and Heat Treatment, 2022, 43(12): 1–9. DOI: 10.13289/j.issn.1009-6264.2022-0191. [9] 吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望 [J]. 载人航天, 2016, 22(3): 281–292. DOI: 10.16329/j.cnki.zrht.2016.03.002.WU G H, CHEN Y S, DING W J. Current research, application and future prospect of magnesium alloys in aerospace industry [J]. Manned Spaceflight, 2016, 22(3): 281–292. DOI: 10.16329/j.cnki.zrht.2016.03.002. [10] 薛志勇, 母明浩, 韩修柱, 等. 新时代航空航天用镁合金的成型及强化研究进展 [J]. 热加工工艺, 2022, 51(3): 1–6, 12. DOI: 10.14158/j.cnki.1001-3814.20203129.XUE Z Y, MU M H, HAN X Z, et al. Research progress on forming and strengthening of magnesium alloys for aerospace in new era [J]. Hot Working Technology, 2022, 51(3): 1–6, 12. DOI: 10.14158/j.cnki.1001-3814 20203129. DOI: 10.14158/j.cnki.1001-3814.20203129. [11] LIANG H L, LUO N, CHEN Y L, et al. Interface microstructure and phase constitution of AA1060/TA2/SS30408 trimetallic composites fabricated by explosive welding [J]. Journal of Materials Research and Technology, 2022, 18: 564–576. DOI: 10.1016/j.jmrt.2022.02.109. [12] LIANG H L, LUO N, CHEN Y L, et al. Experimental and numerical simulation study of Fe-based amorphous foil/Al-1060 composites fabricated by an underwater explosive welding method [J]. Composite Interfaces, 2021, 28(10): 997–1013. DOI: 10.1080/09276440.2020.1843868. [13] LIANG H L, LUO N, LI X J, et al. Joining of Zr60Ti17Cu12Ni11 bulk metallic glass and aluminum 1060 by underwater explosive welding method [J]. Journal of Manufacturing Processes, 2019, 45: 115–122. DOI: 10.1016/j.jmapro.2019.06.035. [14] 李晓杰, 王宇新, 王小红, 等. 爆炸焊接基复板间隙中的气体冲击波 [J]. 爆炸与冲击, 2021, 41(7): 075301. DOI: 10.11883/bzycj-2020-0197.LI X J, WANG Y X, WANG X H, et al. Gas shock waves in the gap between the base and cladding plates during explosive welding [J]. Explosion and Shock Waves, 2021, 41(7): 075301. DOI: 10.11883/bzycj-2020-0197. [15] LIANG H L, LUO N, CHEN Y L, et al. Interface microstructure morphology and formation evolution mechanism of Al-1060/Cu-T2 composites fabricated by explosive welding method [J]. Composite Interfaces, 2022, 29(5): 465–485. DOI: 10.1080/09276440.2021.1971883. [16] LIANG H L, LUO N, SHEN T, et al. Experimental and numerical simulation study of Zr-based BMG/Al composites manufactured by underwater explosive welding [J]. Journal of Materials Research and Technology, 2020, 9(2): 1539–1548. DOI: 10.1016/j.jmrt.2019.11.079. [17] LUO N, LIANG H L, SUN X, et al. Research on the interfacial microstructure of three-layered stainless steel/Ti/low-carbon steel composite prepared by explosive welding [J]. Composite Interfaces, 2021, 28(6): 609–624. DOI: 10.1080/09276440.2020.1794751. [18] 李韵豪. 钛及钛合金塑性变形加工的感应加热(上) [J]. 金属加工(热加工), 2016(11): 31–36. DOI: 10.3969/j.issn.1674-165X.2016.11.018. [19] 李韵豪. 钛及钛合金塑性变形加工的感应加热(下) [J]. 金属加工(热加工), 2016(13): 61–65. DOI: 10.3969/j.issn.1674-165X.2016.13.024. [20] 李韵豪. 铝及铝合金塑性变形加工的感应加热(上) [J]. 金属加工(热加工), 2016(3): 54–58. DOI: 10.3969/j.issn.1674-165X.2016.03.027. [21] 李韵豪. 铝及铝合金塑性变形加工的感应加热(下) [J]. 金属加工(热加工), 2016(5): 25–30. DOI: 10.3969/j.issn.1674-165X.2016.05.013. [22] 韩顺昌. 爆炸焊接界面相变与断口组织 [M]. 北京: 国防工业出版社, 2011: 87–88. [23] FU Y S, LUO K X, ZHAO P L, et al. Dynamic behavior of Cu/Al-laminated metal with impedance mismatch [J]. Journal of Materials Engineering and Performance, 2022, 31(11): 9173–9182. DOI: 10.1007/s11665-022-06930-1. [24] ZHOU Q, LIU R, ZHOU Q, et al. Tensile behavior of the titanium-steel explosive welded interface under quasi-static and high-strain rate loading [J]. International Journal of Solids and Structures, 2022, 254/255: 111870. DOI: 10.1016/j.ijsolstr.2022.111870. [25] LI Y X, WANG L, ZHU L, et al. Investigation of interfacial structure and dynamic mechanical behavior of titanium alloy laminated composites [J]. Journal of Materials Research and Technology, 2022, 21: 5111–5120. DOI: 10.1016/j.jmrt.2022.11.101. [26] 郑远谋. 爆炸焊接和爆炸复合材料的原理及应用 [M]. 长沙: 中南大学出版社, 2007: 511–512. [27] LIANG H L, LUO N, CHEN Y L, et al. Experimental and numerical investigations on interface microstructure characteristics and wave formation mechanism of Sn/Cu explosive welded plates [J]. Composite Interfaces, 2023, 30(5): 467–491. DOI: 10.1080/09276440.2023.2179256. [28] LIANG H L, CHEN Y L, LUO N, et al. Phase constitution and texture distribution in the vortex zone of Co/Cu explosive welded plates [J]. Journal of Materials Research and Technology, 2022, 18: 4228–4235. DOI: 10.1016/j.jmrt.2022.04.108. [29] 王耀华. 金属板材爆炸焊接研究与实践 [M]. 北京: 国防工业出版社, 2011: 105–106.