电磁驱动高速弹丸成型模式与影响因素

黄炳瑜 陈学秒 张旭平 熊玮 王桂吉 张先锋 税荣杰 胥超 谭福利

黄炳瑜, 陈学秒, 张旭平, 熊玮, 王桂吉, 张先锋, 税荣杰, 胥超, 谭福利. 电磁驱动高速弹丸成型模式与影响因素[J]. 爆炸与冲击, 2024, 44(4): 043301. doi: 10.11883/bzycj-2023-0388
引用本文: 黄炳瑜, 陈学秒, 张旭平, 熊玮, 王桂吉, 张先锋, 税荣杰, 胥超, 谭福利. 电磁驱动高速弹丸成型模式与影响因素[J]. 爆炸与冲击, 2024, 44(4): 043301. doi: 10.11883/bzycj-2023-0388
HUANG Bingyu, CHEN Xuemiao, ZHANG Xuping, XIONG Wei, WANG Guiji, ZHANG Xianfeng, SHUI Rongjie, XU Chao, TAN Fuli. Modes and influencing factors of electromagnetically driven high velocity formed projectile[J]. Explosion And Shock Waves, 2024, 44(4): 043301. doi: 10.11883/bzycj-2023-0388
Citation: HUANG Bingyu, CHEN Xuemiao, ZHANG Xuping, XIONG Wei, WANG Guiji, ZHANG Xianfeng, SHUI Rongjie, XU Chao, TAN Fuli. Modes and influencing factors of electromagnetically driven high velocity formed projectile[J]. Explosion And Shock Waves, 2024, 44(4): 043301. doi: 10.11883/bzycj-2023-0388

电磁驱动高速弹丸成型模式与影响因素

doi: 10.11883/bzycj-2023-0388
基金项目: 国家自然科学基金(11972031,92166201,12141202);
详细信息
    作者简介:

    黄炳瑜(1995- ),男,博士研究生,749883860@qq.com

    通讯作者:

    张旭平(1988- ),男,博士,副研究员,xupingzhang@sina.cn

  • 中图分类号: O389

Modes and influencing factors of electromagnetically driven high velocity formed projectile

  • 摘要: 为了研究电磁驱动药型罩形成高速成型弹丸的可行性及弹丸成型特性,基于CQ-7脉冲功率装置,开展了电磁驱动线性药型罩形成弹丸技术实验。结合激光多普勒测速技术,实现了电磁驱动药型罩形成弹丸的速度测量和侵彻铝靶验证。同时,基于流体动力学软件和相应电磁仿真模块,建立了电磁驱动弹丸成型的物理模型和数值模拟方法,模拟了弹丸成型和侵彻铝靶的动力学过程,利用实验结果验证了数值模拟方法的可靠性。在此基础上,研究了等壁厚球缺型药型罩的结构参数以及加载能量对弹丸成型参数的影响规律。结果表明:外曲率半径对弹丸的头部速度影响较小,而头部速度会随壁厚的减小和加载能量的增大显著增加;弹丸的长径比随外曲率半径和壁厚的减小、加载能量的增大呈逐渐增加的趋势。最后,利用数值模拟方法预测并验证了利用电磁驱动技术获得高速度和大质量成型弹丸的可行性。
  • 图  1  电磁驱动线性/球缺型药型罩原理图

    Figure  1.  Illustration for driving linear/ hemispherical liner by electromagnetic loading

    图  2  实验布局

    Figure  2.  Layout of experiment

    图  3  电流波形图和速度剖面

    Figure  3.  Current and velocity profile

    图  4  弹丸侵彻铝靶实验结果

    Figure  4.  Experimental results for penetration of aluminum targets by projectiles

    图  5  电磁加载过程数值模拟模型

    Figure  5.  Numerical simulation models for electromagnetic loading process

    图  6  弹丸成型及侵彻过程仿真模型

    Figure  6.  Numerical simulation models for projectile formation and penetration process

    图  7  电流密度分布

    Figure  7.  The distribution of current density

    图  8  磁压力变化曲线(k=0.37)

    Figure  8.  Changing curves of magnetic pressure

    图  9  速度演化曲线对比

    Figure  9.  Comparison of velocity evolution curves

    图  10  速度剖面

    Figure  10.  Velocity profile

    图  11  弹丸成型过程

    Figure  11.  Formation processes of formed projectile

    图  12  侵彻过程(以弹丸到靶时间作为起始时刻)

    Figure  12.  Penetration processes (Starting when the projectile arrivals at the target)

    图  13  侵彻实验与数值模拟结果对比

    Figure  13.  Comparison between penetration experiments and numerical simulations results

    图  14  球缺型药型罩1/4模型

    Figure  14.  1/4 model of the hemispherical liner

    图  15  各单元电流密度曲线对比

    Figure  15.  Comparison of current density curves for selected elements

    图  16  磁压力变化曲线

    Figure  16.  Changing curves of magnetic pressure

    图  17  等壁厚球缺型药型罩的侵彻体形成过程

    Figure  17.  Formation processes of penetrators of hemispherical flyer with equal wall thickness

    图  18  不同外曲率半径下弹丸成型图(30 μs)

    Figure  18.  Formation shapes of projectiles with different external curvature radii (30 μs)

    图  19  不同外曲率半径下弹丸参数变化

    Figure  19.  Change of projectile parameters with different external curvature radius

    图  20  不同壁厚下弹丸成型图(30 μs)

    Figure  20.  Formation shape of projectile with different thicknesses (30 μs)

    图  21  不同壁厚下弹丸参数变化曲线

    Figure  21.  Changing curves of projectile parameters with different thicknesses

    图  22  不同加载能量下弹丸成型图(30 μs)

    Figure  22.  Formation shape of projectile with different loading energy (30 μs)

    图  23  不同加载能量下弹丸参数变化曲线

    Figure  23.  Changing curves of projectile parameters with different loading energy

    图  24  两组结构的弹丸形态(30 μs)

    Figure  24.  Formation shapes of two sets of structures (30 μs)

    图  25  弹丸成型形状(30 μs)

    Figure  25.  Formation shapes of projectile (30 μs)

    表  1  CQ-7的电参数

    Table  1.   Electrical parameters of CQ-7

    电容/μF电感/nH电阻/mΩ充电峰值电压上升时间
    20.484.123.35±65 kV400~700 ns
    下载: 导出CSV

    表  2  实验条件

    Table  2.   Experimental conditions

    实验 实验类型 充电电压/kV
    Shot-1 PDV测速 ±45
    Shot-2 侵彻铝靶 ±45
    Shot-3 PDV测速 ±55
    Shot-4 侵彻铝靶 ±55
    下载: 导出CSV

    表  3  无氧铜的Burgess电导率模型参数

    Table  3.   Parameters of Burgess electrical resistivity model for Cu-OFHC

    V0/(cm3·g−1) γ0 θm,0/eV LF/(kJ·mol−1) K
    0.112 2.00 0.117 0.13 0.964
    下载: 导出CSV

    表  4  实验与数值模拟侵彻数据对比

    Table  4.   Comparison of the penetration data between experiments and numerical simulations

    编号 方法 侵彻深度/mm 相对误差/% 开孔尺寸/mm 相对误差/%
    Shot-2 实验 26.5 7.1 14.2×16.3 4.2
    计算 28.4 14.8
    Shot-4 实验 32.3 2.8 17.1×16.7 −3.0
    计算 33.2 16.6
    下载: 导出CSV
  • [1] 谭多望, 孙承纬. 成型装药研究新进展 [J]. 爆炸与冲击, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.

    TAN D W, SUN C W. Progress in studies on shaped charge [J]. Explosion and Shock Waves, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.
    [2] 杨军, 蒋建伟, 门建兵. 准球形爆炸成型弹丸的形成、飞行及侵彻过程的数值模拟 [J]. 高压物理学报, 2006, 20(4): 429–433. DOI: 10.11858/gywlxb.2006.04.015.

    YANG J, JIANG J W, MEN J B. Numerical simulation for formation flight and penetration of sphericity EFP [J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 429–433. DOI: 10.11858/gywlxb.2006.04.015.
    [3] 刘建青, 顾文彬, 徐浩铭, 等. 多点起爆装药结构参数对尾翼EFP成型的影响 [J]. 含能材料, 2014(5): 594–599. DOI: 10.3969/j.issn.1006-9941.2014.05.004.

    LIU J Q, GU W B, XU H M, et al. Effects of multi-point initiation charge configuration parameters on EFP with fins formation [J]. Chinese Journal of Energetic Materials, 2014(5): 594–599. DOI: 10.3969/j.issn.1006-9941.2014.05.004.
    [4] 郭莎, 任新联, 周涛, 等. 翻转成型大长径比爆炸成型弹丸的数值模拟 [J]. 科学技术与工程, 2019, 19(27): 272–276. DOI: 10.3969/j.issn.1671-1815.2019.27.039.

    GUO S, REN X L, ZHOU T, et al. Numerical simulation of large length diameter ratio overturn molding explosively formed penetrator [J]. Science Technology and Engineering, 2019, 19(27): 272–276. DOI: 10.3969/j.issn.1671-1815.2019.27.039.
    [5] 黄炫宁, 李伟兵, 程伟, 等. 锥弧结合罩形成长杆状密实EFP的可行性 [J]. 含能材料, 2019, 27(2): 90–96. DOI: 10.11943/CJEM2018051.

    HUANG X N, LI W B, CHENG W, et al. Feasibility of the formation of long rod-shaped compacted explosively formed penetrator by cone-arc liner [J]. Chinese Journal of Energetic Materials, 2019, 27(2): 90–96. DOI: 10.11943/CJEM2018051.
    [6] 王伟, 徐琳, 王玥兮, 等. 准球形EFP成形因素的正交优化设计与试验验证 [J]. 兵器材料科学与工程, 2020, 43(5): 22–25. DOI: 10.14024/j.cnki.1004-244x.20200513.001.

    WANG W, XU L, WANG Y X, et al. Orthogonal optimization design and experimental study on formation process of quasi-spheral explosively formed projectile [J]. Ordnance Material Science and Engineering, 2020, 43(5): 22–25. DOI: 10.14024/j.cnki.1004-244x.20200513.001.
    [7] 张雪朋, 刘亚昆, 伊建亚, 等. 复合装药包覆式活性侵彻体成型及侵彻研究 [J]. 兵器装备工程学报, 2021, 42(7): 1–5. DOI: 10.11809/bqzbgcxb2021.07.001.

    ZHANG X P, LIU Y K, YI J Y, et al. Study on formation and penetration of the wrapped reactive projectile formed by double-layer shaped charge [J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 1–5. DOI: 10.11809/bqzbgcxb2021.07.001.
    [8] 林加剑, 贾虎. 爆炸成型弹丸有效装药结构理论分析及试验研究 [J]. 弹箭与制导学报, 2015, 35(1): 59–62,67. DOI: 10.15892/j.cnki.djzdxb.2015.01.016.

    LIN J J, JIA H. Theoretical analysis and experimental research on the effective shaped charge with EFP [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(1): 59–62,67. DOI: 10.15892/j.cnki.djzdxb.2015.01.016.
    [9] 张旭平. 电磁驱动实验技术及其加载下聚苯乙烯的动态行为研究 [D]. 绵阳: 中国工程物理研究院, 2019.
    [10] DEGNAN J H, BAKER W L, ALME M L, et al. Multimegajoule electromagnetic implosion of shaped solid-density liners [J]. Fusion Technology, 1995, 27(2): 115–123. DOI: 10.13182/FST95-A30368.
    [11] DEGNAN J H, TACCETTI J M, CAVAZOS T, et al. Implosion of solid liner for compression of field reversed configuration [J]. IEEE Transactions on Plasma Science, 2001, 29(1): 93–98. DOI: 10.1109/27.912947.
    [12] DOU J H, JIA X, HUANG Z X, et al. Theoretical and numerical simulation study on jet formation and penetration of different liner structures driven by electromagnetic pressure [J]. Defence Technology, 2021, 17(3): 846–858. DOI: 10.1016/j.dt.2020.05.016.
    [13] DOU J H, JIA X, HUANG Z X, et al. Theoretical study of the jet formation of a shaped charge liner driven by strong electromagnetic energy [J]. IEEE Transactions on Plasma Science, 2019, 47(12): 5283–5290. DOI: 10.1109/tps.2019.2951112.
    [14] 王桂吉, 罗斌强, 陈学秒, 等. 磁驱动平面准等熵加载装置、实验技术及应用研究新进展 [J]. 爆炸与冲击, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.

    WANG G J, LUO B Q, CHEN X M, et al. Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression [J]. Explosion and Shock Waves, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.
    [15] 王桂吉. 磁驱动等熵压缩和飞片加载技术和实验研究 [D]. 绵阳: 中国工程物理研究院, 2007.

    WANG G J. Research on magnetically driven isentropic compression and flyer plates [D]. Mianyang: China Academy of Engineering Physics, 2007.
    [16] 章征伟. 磁驱动固体套筒内爆理论与实验研究 [D]. 绵阳: 中国工程物理研究院, 2020.

    ZHANG Z W. Theoretic and experimental study on magnetically driven solid linerimplosion [D]. Mianyang: China Academy of Engineering Physics, 2020.
    [17] KNUDSON M D, LEMKE R W, HAYES D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique [J]. Journal of Applied Physics, 2003, 94(7): 4420–4431. DOI: 10.1063/1.1604967.
    [18] GRACE F, DEGNAN J, ROTH C, et al. Shaped charge jets driven by electromagnetic energy [C]// Proceedings of the 28th International Symposium of Conference. Atlanta: International Ballistics Society, 2013: 15–26.
    [19] HUANG B Y, ZHANG X P, WANG G J, et al. Shaped charge liner collapse and jet formation by electromagnetic loading on high pulsed power generator [J]. IEEE Transactions on Plasma Science, 2023, 51(10): 3140–3151. DOI: 10.1109/TPS.2023.3320665.
    [20] CHEN X M, LUO B Q, ZHANG X P, et al. A compact pulsed power driver with precisely shaped current waveforms for magnetically driven loading experiments [J]. Review of Scientific Instruments, 2022, 93(8): 083910. DOI: 10.1063/5.0089939.
    [21] DOLAN D H. Extreme measurements with photonic Doppler velocimetry (PDV) [J]. Review of Scientific Instruments, 2020, 91(5): 051501. DOI: 10.1063/5.0004363.
    [22] ZELLNER M B, VUNNI G B. Photon Doppler velocimetry (PDV) characterization of shaped charge jet formation [J]. Procedia Engineering, 2013, 58: 88–97. DOI: 10.1016/j.proeng.2013.05.012.
    [23] L'EPLATTENIER P, COOK G, ASHCRAFT C, et al. Introduction of an electromagnetism module in LS-DYNA for coupled mechanical-thermal-electromagnetic simulations [J]. Steel Research International, 2009, 80(5): 351–358. DOI: 10.2374/SRI08SP152.
    [24] L'EPLATTENIER P, ÇALDICHOURY I. Recent developments in the electromagnetic module: a new 2D axi-symmetric EM solver [C]//Proceedings of the 10th European LS-DYNA Conference. Würzburg, German, 2015.
    [25] 张旭平, 赵剑衡, 谭福利, 等. 磁驱动飞片的三维数值模拟及分析 [J]. 高压物理学报, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015.

    ZHANG X P, ZHAO J H, TAN F L, et al. Three-dimensional numerical simulation and analysis of magnetically driven flyer plates [J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015.
    [26] BURGESS T J. Electrical resistivity model of metals [C]//Proceedings of the 4th International Conference on Megagauss Magnetic-Field Generation and Related Topics. Santa Fe, NM, USA, 1986.
  • 加载中
图(25) / 表(4)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  29
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2023-12-28
  • 网络出版日期:  2024-01-18
  • 刊出日期:  2024-04-07

目录

    /

    返回文章
    返回