大口径锥头弹体高速倾斜入水偏转规律数值模拟

陈建良 杨璞 李继承 陈刚 邓宏见 范志庚

陈建良, 杨璞, 李继承, 陈刚, 邓宏见, 范志庚. 大口径锥头弹体高速倾斜入水偏转规律数值模拟[J]. 爆炸与冲击, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398
引用本文: 陈建良, 杨璞, 李继承, 陈刚, 邓宏见, 范志庚. 大口径锥头弹体高速倾斜入水偏转规律数值模拟[J]. 爆炸与冲击, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398
CHEN Jianliang, YANG Pu, LI Jicheng, CHEN Gang, DENG Hongjian, FAN Zhigeng. Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry[J]. Explosion And Shock Waves, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398
Citation: CHEN Jianliang, YANG Pu, LI Jicheng, CHEN Gang, DENG Hongjian, FAN Zhigeng. Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry[J]. Explosion And Shock Waves, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398

大口径锥头弹体高速倾斜入水偏转规律数值模拟

doi: 10.11883/bzycj-2023-0398
基金项目: 四川省自然科学基金杰出青年科学基金(2023NSFSC1913)
详细信息
    作者简介:

    陈建良(1991- ),男,硕士,工程师,chen729@caep.cn

    通讯作者:

    陈 刚(1971- ),男,博士,研究员,chengang@caep.cn

  • 中图分类号: O353.4

Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry

  • 摘要: 结合某大口径锥头弹体高速倾斜入水试验,采用任意拉格朗日-欧拉(arbitrary Lagrange-Euler,ALE)流固耦合方法对弹体倾斜入水偏转行为进行数值模拟,研究了弹体以500 m/s高速倾斜入水过程中不同受力模式、载荷变化特征以及弹体发生偏转的力学机理,分析了入水角度对弹体偏转规律的影响。结果表明:在俯仰力矩作用下,弹体均发生抬头方向偏转,且偏转速度呈现先增大后减小的趋势,偏转程度在不同入水角度范围内呈现不同的变化趋势。当入水角度小于15°时,弹体会发生“跳弹”现象;当入水角度为30°~60°时,弹体偏转趋势基本一致,均由初始倾斜状态逐渐转动至水平状态、竖直状态并最终以弹头入水反方向的“出水”姿态向水下运动;当入水角度为75°时,弹体转动至水平状态后,并未继续偏转至竖直状态,弹头以朝斜上方的姿态向水下运动;弹体的入水侵深随入水角度的增大而增大,且增大趋势近似满足指数函数关系。
  • 图  1  弹体和靶体有限元几何模型

    Figure  1.  Finite element models of the projectile and target

    图  2  弹体斜入水角度定义

    Figure  2.  Definition of inclined angle for oblique water entry of projectile

    图  3  试验系统示意图(正视图)

    Figure  3.  Schematic diagram of the test system (front view)

    图  4  试验弹体及水箱的有限元模型(正视图)

    Figure  4.  Finite element models of the projectile and water tank (front view)

    图  5  弹体入水偏转过程的数值模拟与试验结果的对比

    Figure  5.  Comparison of deflection processes between numerical simulation and test results

    图  6  弹体水中姿态对比

    Figure  6.  Comparison of simulated and test attitudes of a projectile in water

    图  7  水中空泡形态对比

    Figure  7.  Comparison of simulated and test cavity shapes in water

    图  8  60°入水角度时弹体入水偏转过程

    Figure  8.  Trajectory deflection process of the projectile entering the water at a 60° angle

    图  9  弹体受力模式变化示意图

    Figure  9.  Variation of contact force mode on the projectile during penetration

    图  10  60°入水角度时弹体水平和竖直方向的载荷时程曲线

    Figure  10.  Variation of horizontal and vertical forces on the projectile at a 60° entry angle

    图  11  60°入水角度时弹体锥段和柱段的横向载荷时程曲线

    Figure  11.  Variation of lateral forces of the cone head and cylinder at a 60° entry angle

    图  12  60°入水角度时弹体锥段和柱段载荷引起的俯仰力矩时程曲线

    Figure  12.  Variation of pitch moments of the cone head and cylinder at a 60° entry angle

    图  13  60°入水角度时弹体偏转角速度时程曲线

    Figure  13.  Variation of deflection angular velocity at a 60° entry angle

    图  14  60°入水角度时弹体轴向和横向载荷时程曲线

    Figure  14.  Variation of axial and lateral forces on the penetrator at a 60° entry angle

    图  15  不同入水角度时弹体的运动轨迹

    Figure  15.  Trajectory deflection processes of projectiles at different entry angles

    图  16  不同入水角度时弹体的速度变化时程曲线

    Figure  16.  Variations of the velocities of the projectiles at different entry angles

    图  17  不同入水角度时弹体水平和竖直方向载荷时程曲线

    Figure  17.  Variations of horizontal and vertical forces on the projectiles at different entry angles

    图  18  不同入水角度时弹体轴向和横向载荷时程曲线

    Figure  18.  Variations of axial and lateral forces on the projectiles at different entry angles

    图  19  弹体偏转角和偏转角速度时程曲线

    Figure  19.  Variations of deflection angles and deflection angular velocities at different entry angles

    图  20  弹体俯仰角变化时程曲线

    Figure  20.  Variations of pitch angles at different entry angles

    图  21  弹体侵深与入水角度的关系

    Figure  21.  Relationship between penetration depth and entry angles

    表  1  材料Johnson-Cook模型参数[21-22]

    Table  1.   Johnson-Cook model parameters of materials[21-22]

    材料 ρ/(kg·m–3) E/GPa ν cp/(J·kg–1·K–1) Tr/K Tm/K $\dot\varepsilon $/s–1 A/MPa B/MPa n C
    G50 7 620 205 0.28 469.0 300 1765 1 1 445 1 326 0.356 0.005
    7A04 2 850 69.35 0.33 921.0 293 878 1 602.5 732.1 0.753 0.014
    材料 m D1 D2 D3 D4 D5 c0/(m·s–1) S1 γ0 a0
    G50 1.120 0.100 0.760 1.57 0 0 4280 1.99 2.00 0.46
    7A04 1.015 0.059 0.246 –2.41 –0.1 –0.1 5240 1.40 1.97 0.48
    下载: 导出CSV
  • [1] VON KARMAN T H. The impact on seaplane floats during landing: NACA technical note No. 321 [R]. Washington: NACA, 1929.
    [2] LOGVINOVICH G V. Hydrodynamics of flows with free boundaries [M]. Kiev: Naukova Dumka, 1969.
    [3] MAY A, WOODHULL J C. Drag coefficients of steel spheres entering water vertically [J]. Journal of Applied Physics, 1948, 19(12): 1109–1121. DOI: 10.1063/1.1715027.
    [4] 陈先富. 弹丸入水空穴的试验研究 [J]. 爆炸与冲击, 1985, 5(4): 70–73.

    CHEN X F. Experimental studies on the cavitation phenomena as a pellet entering water [J]. Explosion and Shock Waves, 1985, 5(4): 70–73.
    [5] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.

    ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
    [6] 郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.

    GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
    [7] 刘思华, 王占莹, 李利剑, 等. 头型对射弹高速入水稳定性的影响 [J]. 航空学报, 2023, 44(21): 528437. DOI: 10.7527/S1000-6893.2023.28437.

    LIU S H, WANG Z Y, LI L J, et al. Influence of nose shapes on high-speed water entry stability of projectile [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528437. DOI: 10.7527/S1000-6893.2023.28437.
    [8] 王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究 [J]. 兵工学报, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.

    WANG Y, YUAN X L, LV C. Experimental research on curved trajectory of high-speed water-entry missile [J]. Acta Armamentarii, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.
    [9] SHI Y, HUA Y, PAN G. Experimental study on the trajectory of projectile water entry with asymmetric nose shape [J]. Physics of Fluids, 2020, 32(12): 122119. DOI: 10.1063/5.0033906.
    [10] 马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟 [J]. 哈尔滨工业大学学报, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.

    MA Q P, WEI Y J, WANG C, et al. Numerical simulation of high-speed water entry cavity of cylinders [J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.
    [11] GAO J G, CHEN Z H, HUANG Z G, et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061.
    [12] CHANG Y N, TONG A Y. A numerical study on water entry of cylindrical projectiles [J]. Physics of Fluids, 2021, 33(9): 093304. DOI: 10.1063/5.0059892.
    [13] 肖海燕, 罗松, 朱珠, 等. 高速射弹小角度入水弹道特性研究 [J]. 北京理工大学学报, 2019, 39(8): 784–791. DOI: 10.15918/j.tbit1001-0645.2019.08.003.

    XIAO H Y, LUO S, ZHU Z, et al. Trajectory and cavitation characteristics of high-speed projectiles at small angle of water entry [J]. Transactions of Beijing Institute of Technology, 2019, 39(8): 784–791. DOI: 10.15918/j.tbit1001-0645.2019.08.003.
    [14] 黄振贵, 王瑞琦, 陈志华, 等. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性 [J]. 爆炸与冲击, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.

    HUANG Z G, WANG R Q, CHEN Z H, et al. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities [J]. Explosion and Shock Waves, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
    [15] 胡明勇, 张志宏, 刘巨斌, 等. 低亚声速射弹垂直入水的流体与固体耦合数值计算研究 [J]. 兵工学报, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.

    HU M Y, ZHANG Z H, LIU J B, et al. Fluid-solid coupling numerical simulation on vertical water entry of projectile at low subsonic speed [J]. Acta Armamentarii, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.
    [16] GUO Z T, ZHANG W, XIAO X K, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes [J]. International Journal of Impact Engineering, 2012, 49: 43–60. DOI: 10.1016/j.ijimpeng.2012.04.004.
    [17] SONG Z J, DUAN W Y, XU G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed [J]. Ocean Engineering, 2020, 211: 107574. DOI: 10.1016/j.oceaneng.2020.107574.
    [18] 李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性 [J]. 哈尔滨工业大学学报, 2017, 49(4): 131–136. DOI: 10.11918/j.issn.0367-6234.201512058.

    LI J C, WEI Y J, WANG C, et al. Water entry trajectory characteristics of high-speed projectiles with various turbulent angular velocity [J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131–136. DOI: 10.11918/j.issn.0367-6234.201512058.
    [19] 汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究 [J]. 弹道学报, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.

    WANG Z, WU M L, DAI W L. Study on load characteristics of high-speed water-entry of large caliber projectile [J]. Journal of Ballistics, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.
    [20] 孙玉松, 周穗华, 张晓兵, 等. 基于多介质ALE方法的大型弹体入水载荷特性研究 [J]. 海军工程大学学报, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.

    SUN Y S, ZHOU S H, ZHANG X B, et al. On water-impact load of heavy projectiles base on multi-material ALE method [J]. Journal of Naval University of Engineering, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.
    [21] 张斌, 李继承, 陈建良, 等. 构型弹体跌落冲击载荷及结构响应特性 [J]. 爆炸与冲击, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.

    ZHANG B, LI J C, CHEN J L, et al. Loading characteristics and structural response of a warhead during drop impact [J]. Explosion and Shock Waves, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.
    [22] 张伟, 肖新科, 魏刚. 7A04铝合金的本构关系和失效模型 [J]. 爆炸与冲击, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.

    ZHANG W, XIAO X K, WEI G. Constitutive relation and fracture model of 7A04 aluminum alloy [J]. Explosion and Shock Waves, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  51
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2023-12-26
  • 网络出版日期:  2024-03-04
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回