Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

大口径锥头弹体高速倾斜入水偏转规律数值模拟

陈建良 杨璞 李继承 陈刚 邓宏见 范志庚

陈建良, 杨璞, 李继承, 陈刚, 邓宏见, 范志庚. 大口径锥头弹体高速倾斜入水偏转规律数值模拟[J]. 爆炸与冲击, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398
引用本文: 陈建良, 杨璞, 李继承, 陈刚, 邓宏见, 范志庚. 大口径锥头弹体高速倾斜入水偏转规律数值模拟[J]. 爆炸与冲击, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398
Wang-Duo-Zhi, FAN Feng, ZHI Xu-Dong, SHEN Shi-Zhao. Failure mechanism of single-layer reticulated domes subjected to impact loads[J]. Explosion And Shock Waves, 2010, 30(2): 169-177. doi: 10.11883/1001-1455(2010)02-0169-09
Citation: CHEN Jianliang, YANG Pu, LI Jicheng, CHEN Gang, DENG Hongjian, FAN Zhigeng. Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry[J]. Explosion And Shock Waves, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398

大口径锥头弹体高速倾斜入水偏转规律数值模拟

doi: 10.11883/bzycj-2023-0398
基金项目: 四川省自然科学基金杰出青年科学基金(2023NSFSC1913)
详细信息
    作者简介:

    陈建良(1991- ),男,硕士,工程师,chen729@caep.cn

    通讯作者:

    陈 刚(1971- ),男,博士,研究员,chengang@caep.cn

  • 中图分类号: O353.4

Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry

  • 摘要: 结合某大口径锥头弹体高速倾斜入水试验,采用任意拉格朗日-欧拉(arbitrary Lagrange-Euler,ALE)流固耦合方法对弹体倾斜入水偏转行为进行数值模拟,研究了弹体以500 m/s高速倾斜入水过程中不同受力模式、载荷变化特征以及弹体发生偏转的力学机理,分析了入水角度对弹体偏转规律的影响。结果表明:在俯仰力矩作用下,弹体均发生抬头方向偏转,且偏转速度呈现先增大后减小的趋势,偏转程度在不同入水角度范围内呈现不同的变化趋势。当入水角度小于15°时,弹体会发生“跳弹”现象;当入水角度为30°~60°时,弹体偏转趋势基本一致,均由初始倾斜状态逐渐转动至水平状态、竖直状态并最终以弹头入水反方向的“出水”姿态向水下运动;当入水角度为75°时,弹体转动至水平状态后,并未继续偏转至竖直状态,弹头以朝斜上方的姿态向水下运动;弹体的入水侵深随入水角度的增大而增大,且增大趋势近似满足指数函数关系。
  • 水下冲击波防护是现代海军舰艇及民用船只设计建造过程中的一个重要因素,几十年来一直是研究重点。早期的相关研究主要集中在,加筋板和特种钢板等传统防护结构上[1-2]。但随着水下武器的发展,传统结构的防护性能已无法满足现代舰艇的生存需要。因此,V.S.Deshpande等[3]、Z.Wei等[4]开始对夹层结构的水下抗冲击性能进行研究。其中,V.S.Deshpande等[3]、D.D.Radford等[5]分别对具有不同面密度的金字塔型芯层和泡沫铝芯层等类型的夹层结构板,进行了水下爆炸冲击波加载实验,总结了夹层结构板受冲击载荷作用时考虑不同夹层结构的变形特点;Z.Y.Xue等[6]对相同质量的蜂窝夹层板和单层板,进行了水下爆炸冲击波加载实验,在不考虑断裂问题的前提下,研究了面板及芯层厚度、相对密度及芯层曲率对夹层板结构抗冲击能力的影响;D.Karagiozova等[7]对爆炸冲击波载荷作用下, 芯层材料分别为铝蜂窝及聚苯乙烯的夹层结构板的动态变形损伤过程, 进行了实验研究,对比分析了两种夹层结构板的变形损伤特点及抗冲击防护性能,并总结了相同面密度条件下夹芯厚度对后面板永久变形的影响。在我国,由于水下冲击波加载对实验条件的限制较大,对夹层结构的水下冲击波防护问题研究,主要还是集中于理论和数值模拟方法,如黄超等[8]、汪玉等[9]。张旭红等[10]对夹层结构抗爆防护性能进行了一系列的实验研究,但主要仍集中在空气爆炸作用条件下。可以看出,当前对于夹层结构的抗冲击性能研究主要针对于蜂窝芯层、金字塔型芯层及复合材料芯层,没有更接近舰艇结构中加筋板的格栅型夹层的抗爆抗冲击性能研究。因此,对格栅型夹层板的水下抗冲击特性实验研究,对于我国舰艇抗爆结构的发展是十分必要的。

    本文中,利用非药式水下冲击波加载装置、结合高速相机,对气背固支格栅夹层板在水下冲击波作用下的动态响应特点及抗冲击防护性能,进行实验研究,拟为现代化舰艇的防护结构设计提供参考。

    为了能在实验室范围内进行水下爆炸冲击波加载实验,设计了非药式水下爆炸冲击波加载实验装置,如图 1所示。通过一级轻气炮发射飞片正撞击钢制水舱端部活塞,对该装置进行驱动,根据声学近似原理,在水舱中x=0处产生呈指数型衰减的水下冲击波。该冲击波在水舱中沿x方向传播,实现对目标靶板的加载[11]。其中主加载水舱的长度为500 mm,加载水舱内径为66 mm,壁厚为12 mm。压力传感器分别安装于主加载水舱的中点处、距离主水舱和水背副舱端面20 mm处。测试靶板通过6个M10螺栓与加载水舱连接。为了防止冲击过程中螺栓孔径向出现过大的拉伸变形而导致的靶板面内位移,在靶板外侧增加了一个7 mm厚的高强度环形夹具,该夹具能够有效防止靶板因面内位移而出现的变形异常[11]

    图  1  非药式水下爆炸冲击波加载实验装置
    Figure  1.  Experimental set-up of non-explosive underwater shock simulation

    飞片及活塞材料均为45钢,当飞片厚度为10 mm、活塞厚度为23 mm时,标定得到加载到靶板上的水下冲击波强度与飞片的速度关系为:p=wcwv, 常数k =0.44,ρw为水的密度,cw为水中声速,v为飞片的撞击速度。通过调整飞片的撞击速度, 可改变着靶冲击波强度,进而调节作用在靶板上的冲量[11]。对应的冲击波衰减时间常数只与飞片及活塞的厚度有关,本文中冲击波衰减时间常数θ≈45 μs。

    格栅夹层结构的动态响应变形情况,利用Photron-Fastcam-SA5高速相机进行观测。该相机最高拍摄速率为106 s-1,本实验中选用4×104 s-1,光源系统为4个1 000 W的摄影灯。

    格栅型夹层结构板的基体材料为5A06铝合金,其中夹层板的前、后面板均厚0.5 mm,芯层的厚度hc=15 mm。夹层板芯层的格栅壁厚为tc=0.5 mm,格栅芯层的拓扑形状为正四边形,其边长为20 mm。夹层板的前、后面板分别利用环氧树脂与芯层胶合,组合后的蜂窝夹层板总厚度为16.1 mm,其平均面密度约为4.42 kg/m2,具体类型及相关尺寸如图 2所示。

    图  2  格栅夹层板尺寸及边界条件
    Figure  2.  Sketches of lattice sandwich panel and clamped boundary condition

    表 1给出了各实验对应的实验参数,其中ˆI=I0/(Hρtσy),为量纲一冲量,H为靶板的初始厚度,ρt为靶板的密度,σy为靶板的屈服应力。由表 1可见,靶板塑性变形后的最大量纲一挠度随着飞片撞击速度的增加而增加,在实验范围内格栅型夹层板出现了面板破裂现象。

    表  1  格栅夹层板实验参数
    Table  1.  Parameters of lattice sandwich panels
    实验 v/(m·s-1) ma/(kg·m-2) p0/MPa ˆI δmax/R 面板损伤
    1 37.24 4.43 28.36 0.57 0.067 印痕
    2 118.82 4.42 77.11 1.54 0.175 印痕
    3 136.54 4.45 104.01 2.07 0.229 印痕
    4 143.97 4.42 109.85 2.19 0.252 印痕
    5 164.04 4.40 132.15 2.44 0.258 裂纹
    6 219.49 4.40 167.63 3.36 0.351 裂纹
    下载: 导出CSV 
    | 显示表格

    图 3为飞片撞击速度为118.82 m/s时,格栅型夹层结构在水下冲击波作用下的典型变形历程。为防止靶板在变形过程中出现反光现象,在夹层板的气背面板上喷涂了一层灰色漆。由图可见,由于水下冲击波的作用,夹层板的后面板出现了类球冠型突起,但与单层板在该类载荷作用下的动态变形历程不同[11]。格栅型夹层板的后面板并未出现明显的塑性铰和变形平台,而是气背面板直接出现类球冠突起,该突起随着冲击波的作用逐渐变大,并伴随出现明显的芯层印痕。这主要是由于格栅夹层板的前面板受压变形后对格栅芯层进行挤压,而壁厚为0.5 mm的格栅芯层压缩不均匀,靠近气背面板的部分变形很小造成的。

    图  3  水下冲击波作用下格栅型夹层结构的动态变形过程
    Figure  3.  Dynamic deformation process of lattice sandwich panelunder underwater shock loading

    图 4为格栅型夹层板在水下冲击波作用下的典型变形损伤模式。由图可以明显看到,当冲击波冲量较小时,靶板的前后面板均未出现明显的塑性大变形,而只是出现了清晰的芯层印痕;而当冲击波强度增大,量纲一冲量为2.44时,在冲击波载荷作用下靶板的气背面板除了出现明显的塑性大变形和芯层印痕,还出现了贯穿型穿孔,且后面板在穿孔处均出现了撕裂现象。这是由于固支边界处的芯层格栅在剪切作用下出现了大变形甚至断裂,从而导致后面板在该位置出现了应力集中,在流固耦合的作用下造成了面板的撕裂。但由于格栅型夹层板的芯层在高强度水下冲击波作用下的变形并不完全均匀,所以导致穿孔变形没有完全对称出现,具体如图 5(b)所示。

    图  4  水下冲击波加载后格栅型夹层板形貌
    Figure  4.  Lattice sandwich panel after blast loading
    图  5  水下冲击波加载后格栅板切面形貌
    Figure  5.  Cross-section of lattice sandwich panels after underwater shock loading

    为了比较5A06铝合金夹层板的抗冲击性能,对5A06铝合金单层板也进行了不同条件下的水下冲击波加载实验。为了保证两种结构板的可比性,实验选用的单层铝合金厚度为2 mm,其平均面密度为4.90 kg/m2。实验其他参数设置与格栅夹层板的冲击波加载实验设置相同,具体见表 2

    表  2  单层板实验参数
    Table  2.  Parameters of single-layered panels
    实验 v/(m·s-1) ma/(kg·m-2) p0/MPa ˆI δmax/R 断裂
    1 41.74 4.91 34.35 0.71 0.112
    2 80.87 4.90 61.83 1.27 0.217
    3 129.54 4.89 93.64 1.92 0.304
    4 135.97 4.91 105.57 2.17 0.367
    下载: 导出CSV 
    | 显示表格

    图 5为格栅型夹层结构板在不同强度水下冲击波作用下的剖面形貌。当冲击波的量纲一冲量为1.54时,夹层板的格栅芯层除在固支边界处出现了明显的压溃扭曲,其他部分仅出现了微小的扭曲,同时前后面板均出现了明显的类球冠型突起;当冲击波量纲一冲量增加到2.44时,格栅芯层的压溃程度明显增强,且该压溃现象不仅局限于固支边界处,同样也出现在靶板的中心区域,但边界处的芯层压溃现象更严重,这主要是由于边界处的剪切失效模式造成的[1]。同时,夹层结构的前、后面板的变形量也因芯层压溃量的增加而增大,这说明固支条件下的格栅型夹层结构板对于边界效应较敏感。

    图 6为格栅型夹层结构板在不同强度水下冲击波作用下,后面板沿半径各位置的最终变形量,其中H=16 mm为夹层板的总厚度。飞片的撞击速度分别为164.04和219.49 m/s时,夹层板的前、后面板在固支边界处均出现了贯穿型的破坏。由图可见,夹层结构气背面板各位置处的变形量随着飞片撞击速度的增大而增大,但整体的变形形式保持良好,均为类球冠形。当飞片撞击速度较大时,后面的中心区域出现了类似平台状的塑性变形,这是由于格栅芯层对后面板挤压形成了较深的印痕、而格栅间隙处没有得到充分的冲击波作用导致的。

    图  6  格栅板后面板各位置最终变形
    Figure  6.  Final deflection of lattice sandwich structure

    水下冲击波载荷作用下格栅型夹层结构板的前、后面板中心最大变形与冲击波量纲一冲量间的关系,如图 7所示。由图可见,靶板前、后面板变形的最大挠度均随着冲击波量纲一冲量的增加而增加,且均呈线性关系。在冲击波冲量较小时,格栅型夹层板前后面板的变形量基本相同,但随着冲击波冲量的增大,前、后面板中心点的挠度差值明显增大,这是由于格栅型夹层板芯层的压溃失效特点决定的。在冲击波冲量较小时,靶板中心位置的格栅变形量很小,基本不会出现压溃扭曲现象,当冲击波强度加大后,芯层的变形也会相应加大,如图 5所示。图 8为相同面密度条件下,单层5A06铝合金板及铝合金格栅型夹层结构板气背面中心处的最大塑性变形,与冲击波量纲一冲量间的关系曲线。由图可见,两种结构板后面板中心点变形量随冲击波冲量的变化趋势基本相同。但在相同水下冲击波冲量的作用下,单层板的最终变形量大于格栅型夹层板。这说明,对于以5A06铝合金为基体材料的单层板和铝合金格栅夹层板,在面密度相同的条件下,格栅型夹层板的抗冲击作用明显强于单层板。

    图  7  格栅板前后面板的最大变形
    Figure  7.  Maximum deflection of lattice sandwich panels
    图  8  不同类型靶板气背面中心最大变形
    Figure  8.  Maximum deflection at central pointon air-back plate of different kinds of panels

    由上述分析可知,在本文范围内,单层板及格栅夹层结构板气背面中心点变形量均与冲击波的量纲一冲量呈线性关系:δmax/R=γˆI+η。而由图 8所示可知,两种类型靶板的η均为零。可以分别拟合得出对应的γ,其中格栅型靶板为0.11,单层板为0.17,γ越大的靶板其抗冲击能力越弱。由此可计算,夹层结构板相对于相同面密度的单层靶板所能提高的抗冲击性能,5A06铝合金格栅夹层的抗冲击性能相比较单层板增加了33.87%。

    利用自行设计的非药式水下冲击波加载装置结合高速相机,对水下冲击波作用下具有相同面密度的5A06铝合金格栅夹层结构板及单层板的抗冲击防护能力,进行了实验研究,获得了格栅夹层结构板在水下冲击波作用下气背面板的动态响应过程。

    实验结果表明:格栅型夹层板在水下冲击波作用下芯层的压缩存在明显的边界效应,固支边界处芯层受压后的剪切作用使该位置处的压缩变形程度大于其他受冲击位置处;当冲击波的量纲一冲量小于4.5时,夹层结构的气背面板最大扰度与冲击波量纲一冲量成线性关系;在水下冲击波作用下,相同面密度的格栅夹层结构板的抗冲击性能比单层板提高了33.87%。

  • 图  1  弹体和靶体有限元几何模型

    Figure  1.  Finite element models of the projectile and target

    图  2  弹体斜入水角度定义

    Figure  2.  Definition of inclined angle for oblique water entry of projectile

    图  3  试验系统示意图(正视图)

    Figure  3.  Schematic diagram of the test system (front view)

    图  4  试验弹体及水箱的有限元模型(正视图)

    Figure  4.  Finite element models of the projectile and water tank (front view)

    图  5  弹体入水偏转过程的数值模拟与试验结果的对比

    Figure  5.  Comparison of deflection processes between numerical simulation and test results

    图  6  弹体水中姿态对比

    Figure  6.  Comparison of simulated and test attitudes of a projectile in water

    图  7  水中空泡形态对比

    Figure  7.  Comparison of simulated and test cavity shapes in water

    图  8  60°入水角度时弹体入水偏转过程

    Figure  8.  Trajectory deflection process of the projectile entering the water at a 60° angle

    图  9  弹体受力模式变化示意图

    Figure  9.  Variation of contact force mode on the projectile during penetration

    图  10  60°入水角度时弹体水平和竖直方向的载荷时程曲线

    Figure  10.  Variation of horizontal and vertical forces on the projectile at a 60° entry angle

    图  11  60°入水角度时弹体锥段和柱段的横向载荷时程曲线

    Figure  11.  Variation of lateral forces of the cone head and cylinder at a 60° entry angle

    图  12  60°入水角度时弹体锥段和柱段载荷引起的俯仰力矩时程曲线

    Figure  12.  Variation of pitch moments of the cone head and cylinder at a 60° entry angle

    图  13  60°入水角度时弹体偏转角速度时程曲线

    Figure  13.  Variation of deflection angular velocity at a 60° entry angle

    图  14  60°入水角度时弹体轴向和横向载荷时程曲线

    Figure  14.  Variation of axial and lateral forces on the penetrator at a 60° entry angle

    图  15  不同入水角度时弹体的运动轨迹

    Figure  15.  Trajectory deflection processes of projectiles at different entry angles

    图  16  不同入水角度时弹体的速度变化时程曲线

    Figure  16.  Variations of the velocities of the projectiles at different entry angles

    图  17  不同入水角度时弹体水平和竖直方向载荷时程曲线

    Figure  17.  Variations of horizontal and vertical forces on the projectiles at different entry angles

    图  18  不同入水角度时弹体轴向和横向载荷时程曲线

    Figure  18.  Variations of axial and lateral forces on the projectiles at different entry angles

    图  19  弹体偏转角和偏转角速度时程曲线

    Figure  19.  Variations of deflection angles and deflection angular velocities at different entry angles

    图  20  弹体俯仰角变化时程曲线

    Figure  20.  Variations of pitch angles at different entry angles

    图  21  弹体侵深与入水角度的关系

    Figure  21.  Relationship between penetration depth and entry angles

    表  1  材料Johnson-Cook模型参数[21-22]

    Table  1.   Johnson-Cook model parameters of materials[21-22]

    材料 ρ/(kg·m–3) E/GPa ν cp/(J·kg–1·K–1) Tr/K Tm/K ˙ε/s–1 A/MPa B/MPa n C
    G50 7 620 205 0.28 469.0 300 1765 1 1 445 1 326 0.356 0.005
    7A04 2 850 69.35 0.33 921.0 293 878 1 602.5 732.1 0.753 0.014
    材料 m D1 D2 D3 D4 D5 c0/(m·s–1) S1 γ0 a0
    G50 1.120 0.100 0.760 1.57 0 0 4280 1.99 2.00 0.46
    7A04 1.015 0.059 0.246 –2.41 –0.1 –0.1 5240 1.40 1.97 0.48
    下载: 导出CSV
  • [1] VON KARMAN T H. The impact on seaplane floats during landing: NACA technical note No. 321 [R]. Washington: NACA, 1929.
    [2] LOGVINOVICH G V. Hydrodynamics of flows with free boundaries [M]. Kiev: Naukova Dumka, 1969.
    [3] MAY A, WOODHULL J C. Drag coefficients of steel spheres entering water vertically [J]. Journal of Applied Physics, 1948, 19(12): 1109–1121. DOI: 10.1063/1.1715027.
    [4] 陈先富. 弹丸入水空穴的试验研究 [J]. 爆炸与冲击, 1985, 5(4): 70–73.

    CHEN X F. Experimental studies on the cavitation phenomena as a pellet entering water [J]. Explosion and Shock Waves, 1985, 5(4): 70–73.
    [5] 张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.

    ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
    [6] 郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.

    GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
    [7] 刘思华, 王占莹, 李利剑, 等. 头型对射弹高速入水稳定性的影响 [J]. 航空学报, 2023, 44(21): 528437. DOI: 10.7527/S1000-6893.2023.28437.

    LIU S H, WANG Z Y, LI L J, et al. Influence of nose shapes on high-speed water entry stability of projectile [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528437. DOI: 10.7527/S1000-6893.2023.28437.
    [8] 王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究 [J]. 兵工学报, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.

    WANG Y, YUAN X L, LV C. Experimental research on curved trajectory of high-speed water-entry missile [J]. Acta Armamentarii, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.
    [9] SHI Y, HUA Y, PAN G. Experimental study on the trajectory of projectile water entry with asymmetric nose shape [J]. Physics of Fluids, 2020, 32(12): 122119. DOI: 10.1063/5.0033906.
    [10] 马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟 [J]. 哈尔滨工业大学学报, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.

    MA Q P, WEI Y J, WANG C, et al. Numerical simulation of high-speed water entry cavity of cylinders [J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.
    [11] GAO J G, CHEN Z H, HUANG Z G, et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061.
    [12] CHANG Y N, TONG A Y. A numerical study on water entry of cylindrical projectiles [J]. Physics of Fluids, 2021, 33(9): 093304. DOI: 10.1063/5.0059892.
    [13] 肖海燕, 罗松, 朱珠, 等. 高速射弹小角度入水弹道特性研究 [J]. 北京理工大学学报, 2019, 39(8): 784–791. DOI: 10.15918/j.tbit1001-0645.2019.08.003.

    XIAO H Y, LUO S, ZHU Z, et al. Trajectory and cavitation characteristics of high-speed projectiles at small angle of water entry [J]. Transactions of Beijing Institute of Technology, 2019, 39(8): 784–791. DOI: 10.15918/j.tbit1001-0645.2019.08.003.
    [14] 黄振贵, 王瑞琦, 陈志华, 等. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性 [J]. 爆炸与冲击, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.

    HUANG Z G, WANG R Q, CHEN Z H, et al. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities [J]. Explosion and Shock Waves, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
    [15] 胡明勇, 张志宏, 刘巨斌, 等. 低亚声速射弹垂直入水的流体与固体耦合数值计算研究 [J]. 兵工学报, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.

    HU M Y, ZHANG Z H, LIU J B, et al. Fluid-solid coupling numerical simulation on vertical water entry of projectile at low subsonic speed [J]. Acta Armamentarii, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.
    [16] GUO Z T, ZHANG W, XIAO X K, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes [J]. International Journal of Impact Engineering, 2012, 49: 43–60. DOI: 10.1016/j.ijimpeng.2012.04.004.
    [17] SONG Z J, DUAN W Y, XU G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed [J]. Ocean Engineering, 2020, 211: 107574. DOI: 10.1016/j.oceaneng.2020.107574.
    [18] 李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性 [J]. 哈尔滨工业大学学报, 2017, 49(4): 131–136. DOI: 10.11918/j.issn.0367-6234.201512058.

    LI J C, WEI Y J, WANG C, et al. Water entry trajectory characteristics of high-speed projectiles with various turbulent angular velocity [J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131–136. DOI: 10.11918/j.issn.0367-6234.201512058.
    [19] 汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究 [J]. 弹道学报, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.

    WANG Z, WU M L, DAI W L. Study on load characteristics of high-speed water-entry of large caliber projectile [J]. Journal of Ballistics, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.
    [20] 孙玉松, 周穗华, 张晓兵, 等. 基于多介质ALE方法的大型弹体入水载荷特性研究 [J]. 海军工程大学学报, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.

    SUN Y S, ZHOU S H, ZHANG X B, et al. On water-impact load of heavy projectiles base on multi-material ALE method [J]. Journal of Naval University of Engineering, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.
    [21] 张斌, 李继承, 陈建良, 等. 构型弹体跌落冲击载荷及结构响应特性 [J]. 爆炸与冲击, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.

    ZHANG B, LI J C, CHEN J L, et al. Loading characteristics and structural response of a warhead during drop impact [J]. Explosion and Shock Waves, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.
    [22] 张伟, 肖新科, 魏刚. 7A04铝合金的本构关系和失效模型 [J]. 爆炸与冲击, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.

    ZHANG W, XIAO X K, WEI G. Constitutive relation and fracture model of 7A04 aluminum alloy [J]. Explosion and Shock Waves, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.
  • 期刊类型引用(4)

    1. 江磊,吴乙万,白鸿柏,李上洲,任志英. 新型落锤冲击试验系统研制. 计算机测量与控制. 2020(02): 262-266 . 百度学术
    2. 周昊,郭锐,刘荣忠,刘涛. 碳纤维增强聚合物复合材料方形蜂窝夹层结构水下爆炸动态响应数值模拟. 复合材料学报. 2019(05): 1226-1234 . 百度学术
    3. 杨德庆,张相闻,吴秉鸿. 负泊松比效应防护结构抗爆抗冲击性能影响因素. 上海交通大学学报. 2018(04): 379-387 . 百度学术
    4. 何性顺,段奇三,苏健军,张俊锋,姬建荣,孔霖. 爆炸冲击载荷下效应靶形变测量技术研究. 测绘通报. 2016(11): 72-74+102 . 百度学术

    其他类型引用(6)

  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  63
  • PDF下载量:  135
  • 被引次数: 10
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2023-12-26
  • 网络出版日期:  2024-03-04
  • 刊出日期:  2024-07-15

目录

/

返回文章
返回