改性煤矸石-海藻酸钠粉体对管道内甲烷/空气爆炸的抑爆实验

杨克 李雪瑞 纪虹 郑凯 邢志祥 蒋军成

杨克, 李雪瑞, 纪虹, 郑凯, 邢志祥, 蒋军成. 改性煤矸石-海藻酸钠粉体对管道内甲烷/空气爆炸的抑爆实验[J]. 爆炸与冲击, 2024, 44(7): 075401. doi: 10.11883/bzycj-2023-0399
引用本文: 杨克, 李雪瑞, 纪虹, 郑凯, 邢志祥, 蒋军成. 改性煤矸石-海藻酸钠粉体对管道内甲烷/空气爆炸的抑爆实验[J]. 爆炸与冲击, 2024, 44(7): 075401. doi: 10.11883/bzycj-2023-0399
YANG Ke, LI Xuerui, JI Hong, ZHENG Kai, XING Zhixiang, JIANG Juncheng. Experiment on suppression of methane/air explosion in pipeline by modified coal gangue-sodium alginate powder[J]. Explosion And Shock Waves, 2024, 44(7): 075401. doi: 10.11883/bzycj-2023-0399
Citation: YANG Ke, LI Xuerui, JI Hong, ZHENG Kai, XING Zhixiang, JIANG Juncheng. Experiment on suppression of methane/air explosion in pipeline by modified coal gangue-sodium alginate powder[J]. Explosion And Shock Waves, 2024, 44(7): 075401. doi: 10.11883/bzycj-2023-0399

改性煤矸石-海藻酸钠粉体对管道内甲烷/空气爆炸的抑爆实验

doi: 10.11883/bzycj-2023-0399
基金项目: 国家自然科学基金(51704041,21927815,52204204,51574046);江苏省自然科学基金(BK20140264, BK20150269);常州市科技支撑计划项目(社会发展)(CE20235039)
详细信息
    作者简介:

    杨 克(1982- ),男,博士,副教授,yangke728@163.com

  • 中图分类号: O389; X932

Experiment on suppression of methane/air explosion in pipeline by modified coal gangue-sodium alginate powder

  • 摘要: 以工业固废煤矸石(coal gangue,CG)为原料,通过焙烧、酸碱激发和物理研磨等方法对其进行改性,得到一种表面粗糙、比表面积较大的微孔改性煤矸石(modified coal gangue,MCG)材料。以MCG作为基体,采用机械化学技术(mechanochemical technology,MCT)将一种新型阻燃剂海藻酸钠(sodium alginate,SA)与MCG进行复配,制备出一种高效、环保、经济的改性煤矸石-海藻酸钠(MCG-SA)粉体抑爆剂。运用热重分析仪、扫描电子显微镜、X射线衍射分别对上述3种粉体进行表征,以确定其热分解特性、微观形貌和晶相成分。在自行搭建实验平台的基础上探究了MCG、SA及MCG-SA复合粉体在不同复配比、不同添加质量条件下对甲烷-空气预混气体的爆炸压力、火焰传播速度等特性参数的影响。研究结果表明:MCG、SA及MCG-SA复合粉体具有良好的抑爆效果,且复合粉体的抑爆能力优于单一粉体。其中,质量为250 mg、SA质量分数为50%的复合粉末对甲烷体积分数为9.5%的甲烷-空气爆炸的协同抑制效果最显著,最大爆炸压力和最大火焰传播速度分别降低36.72%和68.93%,最大爆炸压力和最大火焰传播速度的抵达时间分别延长243.36%和171.33%。
  • 图  1  材料制备工艺

    Figure  1.  Material preparation process

    图  2  TG曲线

    Figure  2.  TG curves

    图  3  DTG曲线

    Figure  3.  DTG curves

    图  4  样品的XRD谱

    Figure  4.  XRD patterns of the samples

    图  5  样品的SEM图像

    Figure  5.  SEM images of the samples

    图  6  爆炸实验平台

    Figure  6.  Explosion experimental platform

    图  7  不同质量粉体抑制剂对火焰最大传播速度的影响

    Figure  7.  Effects of different mass powder inhibitors on the maximum flame propagation velocity

    图  8  不同组分粉体抑制剂火焰图像的对比

    Figure  8.  Comparison of flame images using different component of powder inhibitors

    图  9  不同抑制剂对火焰速度的抑制效果

    Figure  9.  Inhibition effects of different inhibitors on flame velocity

    图  10  250 mg下不同抑制剂对vmaxtf,max的影响

    Figure  10.  Effects of different inhibitors with the same mass 250 mg on vmax and tf,max

    图  11  不同质量复合粉体对火焰速度的影响

    Figure  11.  Effect of composite powders of different masses on flame velocity

    图  12  不同质量复合粉体对vmaxtf,max的影响(wSA=50%)

    Figure  12.  Effect of composite powders of different masses on vmax and tf,max (wSA=50%)

    图  13  不同抑制剂对爆炸压力的影响

    Figure  13.  Effects of different inhibitors on explosion pressure

    图  14  不同质量复合粉体对爆炸压力的影响

    Figure  14.  Effects of composite powders with different masses on explosion pressure

    图  15  不同质量复合粉体对pmaxtp,max的影响

    Figure  15.  Effects of composite powders with different masses on pmax and tp,max

    图  16  抑爆机理

    Figure  16.  Explosion suppression mechanism

    表  1  CG中不同组分的质量分数

    Table  1.   Mass fractions of different compositions in CG %  

    SiO2 Al2O3 SO3 Fe2O3 CaO K2O MgO Others
    43.33 24.57 14.24 10.68 4.15 0.09 0.57 2.37
    下载: 导出CSV

    表  2  不同抑制剂对pmaxtp,max的影响

    Table  2.   Effects of different inhibitors on pmax and tp,max

    粉体类型 喷粉质量/
    mg
    pmax/
    kPa
    下降率/
    %
    tp,max/s 上升率/
    %
    无粉体 0 782.2 0.113
    MCG 250 682.1 12.80 0.168 48.67
    SA 250 623.2 20.33 0.225 99.12
    MCG-SA,wSA=30% 250 613.4 21.58 0.279 146.90
    MCG-SA,wSA=40% 250 558.1 28.65 0.337 198.23
    MCG-SA,wSA=50% 250 495.0 36.72 0.388 243.36
    MCG-SA,wSA=60% 250 635.1 18.81 0.221 95.58
    MCG-SA,wSA=70% 250 651.5 16.71 0.214 89.38
    下载: 导出CSV
  • [1] 景国勋, 穆璐璐. 煤矿瓦斯爆炸事故统计分析及应急管理研究 [J]. 安全与环境学报, 2023, 23(10): 3657–3665. DOI: 10.13637/j.issn.1009-6094.2022.1540.

    JING G X, MU L L. Study on statistical analysis and emergency management of coal mine gas explosion accident [J]. Journal of Safety and Environment, 2023, 23(10): 3657–3665. DOI: 10.13637/j.issn.1009-6094.2022.1540.
    [2] 汪宝发, 胡祖祥. 煤矿瓦斯爆炸事故现状统计及规律分析 [J]. 煤炭技术, 2022, 41(9): 148–151. DOI: 10.13301/j.cnki.ct.2022.09.033.

    WANG B F, HU Z X. Statistics and regular analysis of current situation of gas explosion accidents in coal mine [J]. Coal Technology, 2022, 41(9): 148–151. DOI: 10.13301/j.cnki.ct.2022.09.033.
    [3] 程方明, 南凡, 肖旸, 等. CF3I和CO2抑制甲烷-空气爆炸实验研究 [J]. 爆炸与冲击, 2022, 42(6): 065402. DOI: 10.11883/bzycj-2021-0386.

    CHENG F M, NAN F, XIAO Y, et al. Experimental study on the suppression of methane-air explosion by CF3I and CO2 [J]. Explosion and Shock Waves, 2022, 42(6): 065402. DOI: 10.11883/bzycj-2021-0386.
    [4] 王健, 余靖宇, 凡子尧, 等. 组合多孔介质与氮气幕协同抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2023, 43(10): 105402. DOI: 10.11883/bzycj-2022-0562.

    WANG J, YU J Y, FAN Z Y, et al. Experimental study on the synergistic suppression of gas explosion by combined porous media and nitrogen curtain [J]. Explosion and Shock Waves, 2023, 43(10): 105402. DOI: 10.11883/bzycj-2022-0562.
    [5] 贾海林, 翟汝鹏, 李第辉, 等. 三种盐类超细水雾抑制管道内甲烷-空气预混气爆炸的差异性 [J]. 爆炸与冲击, 2020, 40(8): 082201. DOI: 10.11883/bzycj-2019-0456.

    JIA H L, ZHAI R P, LI D H, et al. Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts [J]. Explosion and Shock Waves, 2020, 40(8): 082201. DOI: 10.11883/bzycj-2019-0456.
    [6] 杨克, 纪虹, 邢志祥, 等. 含草酸钾的超细水雾抑制甲烷爆炸的特性 [J]. 化工学报, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671.

    YANG K, JI H, XING Z X, et al. Characteristics on methane explosion suppression by ultrafine water mist containing potassium oxalate [J]. CIESC Journal, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671.
    [7] 余明高, 付元鹏, 郑立刚, 等. 碳酸氢钠粉体对导管泄爆过程的影响 [J]. 爆炸与冲击, 2021, 41(9): 095403. DOI: 10.11883/bzycj-2020-0437.

    YU M G, FU Y P, ZHENG L G, et al. Effect of sodium bicarbonate powder on the process of ducted venting [J]. Explosion and Shock Waves, 2021, 41(9): 095403. DOI: 10.11883/bzycj-2020-0437.
    [8] 李孝斌, 张瑞杰, 崔沥巍, 等. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析 [J]. 爆炸与冲击, 2020, 40(3): 032101. DOI: 10.11883/bzycj-2019-0090.

    LI X B, ZHANG R J, CUI L W, et al. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea [J]. Explosion and Shock Waves, 2020, 40(3): 032101. DOI: 10.11883/bzycj-2019-0090.
    [9] 谢继标, 张嘉琪, 丁策, 等. 纳米疏水性SiO2协同作用抑制丁烷爆炸速度与压力的耦合分析 [J]. 爆炸与冲击, 2021, 41(9): 095402. DOI: 10.11883/bzycj-2021-0016.

    XIE J B, ZHANG J Q, DING C, et al. Coupling relationship between flame velocity and overpressure of butane explosion inhibited by synergistic effect of nanohydrophobic SiO2 [J]. Explosion and Shock Waves, 2021, 41(9): 095402. DOI: 10.11883/bzycj-2021-0016.
    [10] 郝峥, 许开立, 张毓媛, 等. Al(OH)3对聚丙烯腈粉火焰传播特性影响研究 [J]. 爆炸与冲击, 2022, 42(6): 065401. DOI: 10.11883/bzycj-2021-0322.

    HAO Z, XU K L, ZHANG Y Y, et al. Study on the effect of Al(OH)3 on the flame propagation characteristics of polyacrylonitrile powder [J]. Explosion and Shock Waves, 2022, 42(6): 065401. DOI: 10.11883/bzycj-2021-0322.
    [11] 颜轲, 孟祥豹, 潘智超, 等. KH2PO4/SiO2复合粉体抑制铝粉爆燃效果及机理分析 [J]. 爆炸与冲击, 2022, 42(6): 062101. DOI: 10.11883/bzycj-2021-0190.

    YAN K, MENG X B, PAN Z C, et al. Effect and mechanism of KH2PO4/SiO2 composite powder in inhibiting aluminum dust deflagration [J]. Explosion and Shock Waves, 2022, 42(6): 062101. DOI: 10.11883/bzycj-2021-0190.
    [12] 袁必和, 陶红吉, 孙亚如, 等. 多孔矿物-聚磷酸铵对甲烷爆炸的协同抑制研究 [J]. 中国安全科学学报, 2021, 31(3): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2021.03.006.

    YUAN B H, TAO H J, SUN Y R, et al. Study on synergistic suppression of methane explosion by porous mineral materials-ammonium polyphosphate composite powder [J]. China Safety Science Journal, 2021, 31(3): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2021.03.006.
    [13] WANG Q H, JIANG X X, DENG J, et al. Analysis of the effectiveness of Mg(OH)2/NH4H2PO4 composite dry powder in suppressing methane explosion [J]. Powder Technology, 2023, 417: 118255. DOI: 10.1016/j.powtec.2023.118255.
    [14] 王小云, 牛艳霞. 煤矸石研究综述: 分类、危害及综合利用 [J]. 化工矿物与加工, 2023, 52(11): 18–25. DOI: 10.16283/j.cnki.hgkwyjg.2023.11.003.

    WANG X Y, NIU Y X. Review of research on coal gangue with its classification, hazards and comprehensive utilization [J]. Industrial Minerals Processing, 2023, 52(11): 18–25. DOI: 10.16283/j.cnki.hgkwyjg.2023.11.003.
    [15] 李启辉. 煤矸石的性质及综合利用研究进展 [J]. 应用化工, 2023, 52(5): 1576–1581. DOI: 10.16581/j.cnki.issn1671-3206.20230324.006.

    LI Q H. Research progress on properties and comprehensive utilization of coal gangue [J]. Applied Chemical Industry, 2023, 52(5): 1576–1581. DOI: 10.16581/j.cnki.issn1671-3206.20230324.006.
    [16] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展 [J]. 矿产保护与利用, 2021, 41(6): 165–178. DOI: 10.13779/j.cnki.issn1001-0076.2021.06.020.

    LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue [J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165–178. DOI: 10.13779/j.cnki.issn1001-0076.2021.06.020.
    [17] NABIPOUR H, WANG X, SONG L, et al. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire [J]. Carbohydrate Polymers, 2020, 246: 116641. DOI: 10.1016/j.carbpol.2020.116641.
    [18] 石晶, 冯云, 包杰, 等. 天然生物质材料的制备、性质与应用(Ⅲ)——医护两用的糖胺聚糖: 透明质酸 [J]. 日用化学工业, 2022, 52(3): 237–244. DOI: 10.3969/j.issn.1001-1803.2022.03.002.

    SHI J, FENG Y, BAO J, et al. Preparation, properties and applications of natural biomass materials (Ⅲ) glycosaminoglycan for medical and skin care applications: hyaluronic acid [J]. China Surfactant Detergent & Cosmetics, 2022, 52(3): 237–244. DOI: 10.3969/j.issn.1001-1803.2022.03.002.
    [19] LIU J, XIAO C M. Fire-retardant multilayer assembled on polyester fabric from water-soluble chitosan, sodium alginate and divalent metal ion [J]. International Journal of Biological Macromolecules, 2018, 119: 1083–1089. DOI: 10.1016/j.ijbiomac.2018.08.043.
    [20] ZHANG J J, JI Q, WANG F J, et al. Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres [J]. Polymer Degradation and Stability, 2012, 97(6): 1034–1040. DOI: 10.1016/j.polymdegradstab.2012.03.004.
    [21] GAO Y J, JIN W J, LIU S F, et al. Flame retardancy and combustion performance of polysaccharide fabrics: a comparison on cotton and calcium alginate fabrics [J]. Polymer Testing, 2023, 124: 108099. DOI: 10.1016/j.polymertesting.2023.108099.
    [22] 燕可洲. 煤基固废中铝硅酸盐矿物在碳酸钠作用下的物相转变机理 [D]. 太原: 山西大学, 2018. DOI: 10.7666/d.D01594913.

    YAN K Z. Phase transformation mechanism of aluminosilicate minerals in coal wastes calcined with sodium carbonate [D]. Taiyuan: Shanxi University, 2018. DOI: 10.7666/d.D01594913.
    [23] 席国喜, 田圣军, 成庆堂, 等. 海藻酸钠的热分解研究 [J]. 化学世界, 2000, 41(5): 254–258. DOI: 10.19500/j.cnki.0367-6358.2000.05.009.

    XI G X, TIAN S J, CHENG Q T, et al. Studies on thermal dissociation of sodium alginate [J]. Chemical World, 2000, 41(5): 254–258. DOI: 10.19500/j.cnki.0367-6358.2000.05.009.
    [24] 谢亚平. 海藻酸钠基多孔碳材料的制备及对水中双酚A的吸附研究 [D]. 西安: 长安大学, 2021. DOI: 10.26976/d.cnki.gchau.2021.002093.

    XIE Y P. Preparation of sodium alginate-based porous carbon for the adsorption of bisphenol a in water [D]. Xi’an: Chang’an University, 2021. DOI: 10.26976/d.cnki.gchau.2021.002093.
    [25] 黄震, 刘姗姗, 韩宇辰, 等. 甘油对大豆分离蛋白/海藻酸钠复合膜热分解的影响 [J]. 中国印刷与包装研究, 2012, 4(1): 51–61. DOI: 10.3969/j.issn.1674-5752.2012.01.010.

    HUANG Z, LIU S S, HAN Y C, et al. Effect of glycerol on thermal decomposition of soy protein isolate-sodium alginate composite films [J]. China Printing and Packaging Study, 2012, 4(1): 51–61. DOI: 10.3969/j.issn.1674-5752.2012.01.010.
    [26] 杨克, 王跃胜, 纪虹, 等. 管道中纳米二氧化硅、二氧化碳和七氟丙烷气固混合物抑制瓦斯爆炸的试验研究 [J]. 安全与环境工程, 2023, 30(5): 28–36. DOI: 10.13578/j.cnki.issn.1671-1556.20220875.

    YANG K, WANG Y S, JI H, et al. Experimental study of gas explosion suppression by gas-solid mixtures of silica nanoparticles, carbon dioxide and heptafluoropropane in pipelines [J]. Safety and Environmental Engineering, 2023, 30(5): 28–36. DOI: 10.13578/j.cnki.issn.1671-1556.20220875.
    [27] 杨克, 王壮, 邢志祥, 等. 氩气协同超细水雾抑制甲烷爆炸试验研究 [J]. 中国安全科学学报, 2020, 30(7): 55–61. DOI: 10.16265/j.cnki.issn1003-3033.2020.07.009.

    YANG K, WANG Z, XING Z X, et al. Experimental study on synergistic gas explosion suppression by argon and ultra-fine water mist [J]. China Safety Science Journal, 2020, 30(7): 55–61. DOI: 10.16265/j.cnki.issn1003-3033.2020.07.009.
    [28] 贾海林, 项海军, 李第辉, 等. 含NaCl超细水雾对不同阻塞率管道内爆炸的抑制 [J]. 爆炸与冲击, 2020, 40(4): 042201. DOI: 10.11883/bzycj-2019-0268.

    JIA H L, XIANG H J, LI D H, et al. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride [J]. Explosion and Shock Waves, 2020, 40(4): 042201. DOI: 10.11883/bzycj-2019-0268.
    [29] YANG K, CHEN K F, JI H, et al. Experimental study on the inhibition of methane/air explosion by modified attapulgite powder [J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104574. DOI: 10.1016/j.jlp.2021.104574.
    [30] WANG X, ZHANG Y S, LIU B, et al. Effectiveness and mechanism of carbamide/fly ash cenosphere with bilayer spherical shell structure as explosion suppressant of coal dust [J]. Journal of Hazardous Materials, 2019, 365: 555–564. DOI: 10.1016/j.jhazmat.2018.11.044.
    [31] LIU A H, LU X E, ZHOU X Y, et al. Experimental investigation on suppression of methane explosion using KHCO3/zeolite composite powder [J]. Powder Technology, 2023, 415: 118157. DOI: 10.1016/j.powtec.2022.118157.
    [32] YU M G, WANG X Y, ZHENG K, et al. Investigation of methane/air explosion suppression by modified montmorillonite inhibitor [J]. Process Safety and Environmental Protection, 2020, 144: 337–348. DOI: 10.1016/j.psep.2020.07.050.
    [33] JI H, LU R J, YANG K, et al. Experimental study on methane explosion suppression by heptafluoropropane drived modified ABC powder [J]. Process Safety and Environmental Protection, 2023, 170: 623–635. DOI: 10.1016/j.psep.2022.12.031.
    [34] 路长, 张运鹏, 朱寒, 等. 氮气喷出对管道瓦斯爆炸的阻爆研究 [J]. 爆炸与冲击, 2020, 40(4): 042101. DOI: 10.11883/bzycj-2019-0106.

    LU C, ZHANG Y P, ZHU H, et al. The spurted nitrogen preventing the gas explosion in pipe [J]. Explosion and Shock Waves, 2020, 40(4): 042101. DOI: 10.11883/bzycj-2019-0106.
    [35] 段玉龙, 卜云兵, 龙凤英, 等. 氮气-细水雾-滑移装置对甲烷爆炸特性的影响 [J]. 中国安全科学学报, 2022, 32(10): 83–89. DOI: 10.16265/j.cnki.issn1003-3033.2022.10.1861.

    DUAN Y L, BU Y B, LONG F Y, et al. Effect of N2-water mist-slip device on methane explosion characteristics [J]. China Safety Science Journal, 2022, 32(10): 83–89. DOI: 10.16265/j.cnki.issn1003-3033.2022.10.1861.
    [36] 王燕, 林晨迪, 郑立刚, 等. 草酸盐粉体抑制甲烷爆炸的试验研究 [J]. 安全与环境学报, 2020, 20(4): 1327–1333. DOI: 10.13637/j.issn.1009-6094.2019.0405.

    WANG Y, LIN C D, ZHENG L G, et al. Experimental investigation into the inhibitive effect of the methane explosion via the oxalate powders [J]. Journal of Safety and Environment, 2020, 20(4): 1327–1333. DOI: 10.13637/j.issn.1009-6094.2019.0405.
    [37] XI Z L, LI M M, LI X, et al. Reaction mechanisms involving the hydroxyl radical in the low-temperature oxidation of coal [J]. Fuel, 2022, 314: 122732. DOI: 10.1016/j.fuel.2021.122732.
    [38] ZHANG X, LU B, QIAO L, et al. Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radicals [J]. Energy, 2023, 285: 129553. DOI: 10.1016/j.energy.2023.129553.
    [39] LV J T, LI Z C, DONG R T, et al. Highly flame-retardant materials of different divalent metal ions alginate/silver phosphate: synthesis, characterizations, and synergistic phosphorus-polymetallic effects [J]. International Journal of Biological Macromolecules, 2023, 247: 125834. DOI: 10.1016/j.ijbiomac.2023.125834.
    [40] 王燕, 程义伸, 曹建亮, 等. 核-壳型KHCO3/赤泥复合粉体的甲烷抑爆特性 [J]. 煤炭学报, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.

    WANG Y, CHENG Y S, CAO J L, et al. Suppression characteristics of KHCO3/red-mud composite powders with core-shell structure on methane explosion [J]. Journal of China Coal Society, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.
    [41] WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure [J]. Journal of Hazardous Materials, 2017, 335: 84–91. DOI: 10.1016/j.jhazmat.2017.04.031.
    [42] 郑立刚, 李刚, 王亚磊, 等. 开口阻塞比对粉体抑制甲烷爆炸的影响研究 [J]. 爆炸与冲击, 2019, 39(11): 115403. DOI: 10.11883/bzycj-2018-0228.

    ZHENG L G, LI G, WANG Y L, et al. Effect of blockage ratios on the characteristics of methane/air explosions suppressed by dry chemicals [J]. Explosion and Shock Waves, 2019, 39(11): 115403. DOI: 10.11883/bzycj-2018-0228.
    [43] 杨克, 贾岳, 纪虹, 等. 垃圾焚烧飞灰对瓦斯爆炸压力及火焰传播的抑制作用及机理研究 [J]. 化工学报, 2023, 74(8): 3597–3607. DOI: 10.11949/0438-1157.20230740.

    YANG K, JIA Y, JI H, et al. Study on the inhibition effect and mechanism of waste incineration fly ash on gas explosion pressure and flame propagation [J]. Journal of Chemical Industry, 2023, 74(8): 3597–3607. DOI: 10.11949/0438-1157.20230740.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  45
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2023-11-20
  • 网络出版日期:  2024-03-11
  • 刊出日期:  2024-07-05

目录

    /

    返回文章
    返回