地面爆炸作用下地下综合管廊动力响应的实验研究

钱海敏 潘亚豪 宗周红 甘露 吴熙 孙苗苗

钱海敏, 潘亚豪, 宗周红, 甘露, 吴熙, 孙苗苗. 地面爆炸作用下地下综合管廊动力响应的实验研究[J]. 爆炸与冲击, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400
引用本文: 钱海敏, 潘亚豪, 宗周红, 甘露, 吴熙, 孙苗苗. 地面爆炸作用下地下综合管廊动力响应的实验研究[J]. 爆炸与冲击, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400
QIAN Haimin, PAN Yahao, ZONG Zhouhong, GAN Lu, WU Xi, SUN Miaomiao. Experimental study on dynamic response of underground utility tunnel under ground explosion[J]. Explosion And Shock Waves, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400
Citation: QIAN Haimin, PAN Yahao, ZONG Zhouhong, GAN Lu, WU Xi, SUN Miaomiao. Experimental study on dynamic response of underground utility tunnel under ground explosion[J]. Explosion And Shock Waves, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400

地面爆炸作用下地下综合管廊动力响应的实验研究

doi: 10.11883/bzycj-2023-0400
基金项目: 国家重点研发计划(2021YFC3100700);国家自然科学基金(52308535)
详细信息
    作者简介:

    钱海敏(1991- ),男,博士,副研究员,qianhm@hzcu.edu.cn

    通讯作者:

    宗周红(1966- ),男,博士,教授,zongzh@seu.edu.cn

  • 中图分类号: O383.1

Experimental study on dynamic response of underground utility tunnel under ground explosion

  • 摘要: 为研究地下综合管廊结构的抗外部爆炸性能,针对整体现浇管廊和预制节段拼装管廊结构在地面爆炸作用下的动力响应特性和破坏模式开展了野外爆炸实验研究。通过11个工况的野外爆炸实验,观测了现浇管廊和预制节段拼装管廊在不同比例距离爆炸工况下的破坏特征和动力响应,对比分析了现浇管廊和预制节段拼装管廊的抗爆性能。结果表明:在地面爆炸作用下,现浇管廊和预制节段拼装管廊的顶板最终均出现弯剪破坏,整体现浇管廊的抗爆性能总体上优于预制节段拼装管廊。起爆位置对预制节段拼装管廊爆炸响应的影响较大,在节段中心上方起爆时结构损伤最严重。在小比例距离地面爆炸作用下,现浇管廊的损伤区域大于预制节段拼装管廊,预制节段拼装管廊的损伤集中在近爆心下方所在的节段或连接接缝处,节段间可产生较大残余滑移。
  • 图  1  现浇管廊模型结构图(单位:mm)

    Figure  1.  Structural drawings of the cast-in-place utility tunnel model (unit in mm)

    图  2  预制节段拼装管廊模型结构图(单位:mm)

    Figure  2.  Structural drawings of the precast segmental utility tunnel model (unit in mm)

    图  3  地下综合管廊模型爆炸实验工况示意图

    Figure  3.  Schematic diagrams of explosion experiment cases for underground utility tunnel models

    图  4  不同装药量的装药形状

    Figure  4.  Charge shapes with different explosive masses

    图  5  整体现浇管廊模型爆炸实验压力与位移测点布置(单位:mm)

    Figure  5.  Layout of pressure and displacement measuring points in cast-in-place utility tunnel model blast experiments (unit in mm)

    图  6  整体现浇管廊模型爆炸实验加速度测点布置(单位:mm)

    Figure  6.  Layout of acceleration measuring points in cast-in-place utility tunnel model blast experiments (unit in mm)

    图  7  预制节段拼装管廊模型爆炸实验压力与位移测点布置(单位:mm)

    Figure  7.  Layout of pressure and displacement measuring points in precast segmental utility tunnel model blast experiments (unit in mm)

    图  8  预制节段拼装管廊模型爆炸实验加速度测点布置(单位:mm)

    Figure  8.  Layout of acceleration measuring points in precast segmental utility tunnel model blast experiments (unit in mm)

    图  9  CUT-2和CUT-3爆炸工况下管廊的损伤

    Figure  9.  Damage of the utility tunnels in explosion cases CUT-2 and CUT-3

    图  10  CUT-4爆炸工况下管廊的破坏

    Figure  10.  Damage of the utility tunnels in explosion case CUT-4

    图  11  PSUT-A2和PSUT-A3爆炸工况下管廊的损伤

    Figure  11.  Damage of the utility tunnels in explosion cases PSUT-A2 and PSUT-A3

    图  12  PSUT-A4爆炸工况下管廊的破坏

    Figure  12.  Damage of the utility tunnel in explosion case PSUT-A4

    图  13  PSUT-B2爆炸工况下管廊的破坏

    Figure  13.  Damage of the utility tunnel in explosion case PSUT-B2

    图  14  PSUT-B3爆炸工况下管廊的破坏

    Figure  14.  Damage of the utility tunnel in explosion case PSUT-B3

    图  15  不同工况下结构跨中表面压力时程曲线

    Figure  15.  Time history curves of mid-span surface pressures of the structures in various cases

    图  16  管廊模型大跨跨中位移响应

    Figure  16.  Mid-span displacement responses of large span of the utility tunnel models

    图  17  预制节段拼装管廊模型接缝滑移响应

    Figure  17.  Joint slip responses of the precast segmental utility tunnel model

    图  18  管廊模型跨中加速度时程曲线

    Figure  18.  Mid-span acceleration time history curves of the utility tunnel models

    表  1  钢筋材料性能参数

    Table  1.   Performance parameters of reinforcement materials

    钢材类别 屈服强度/MPa 极限抗拉强度/MPa 断后伸长率/%
    HPB300级6钢筋 307.8 421.6 29.5
    HRB400级6.5钢筋 437.7 609.3 23.5
    HRB400级10钢筋 429.2 566.7 27.0
    下载: 导出CSV

    表  2  覆盖层土壤参数

    Table  2.   Soil parameters of cover layer

    密度/(kg·m−3 含水率/% 黏聚力/kPa 摩擦角/(°) 体积模量/MPa 剪切模量/MPa
    1 881 4.95 21.7 30.9 10.6 4.1
    下载: 导出CSV

    表  3  地下综合管廊模型爆炸实验工况

    Table  3.   Blast experiment conditions of underground utility tunnel models

    工况 覆土厚度/m 装药量/kg 爆心距/m 比例距离/(m·kg−1/3
    CUT-1 0.83 1.6 0.892 0.763
    CUT-2 0.83 5.4 0.942 0.537
    CUT-3 0.83 7.8 0.980 0.494
    CUT-4 0.67 12.0 0.832 0.363
    PSUT-A1 0.83 1.6 0.892 0.763
    PSUT-A2 0.83 5.4 0.942 0.537
    PSUT-A3 0.83 7.8 0.980 0.494
    PSUT-A4 0.67 12.0 0.832 0.363
    PSUT-B1 0.83 1.6 0.892 0.763
    PSUT-B2 0.83 5.4 0.942 0.537
    PSUT-B3 0.83 7.8 0.980 0.494
    下载: 导出CSV

    表  4  不同工况爆炸下管廊顶板跨中实测残余位移

    Table  4.   Measured mid-span residual displacements of the roofs in different explosion cases

    工况 残余位移/mm 工况 残余位移/mm 工况 残余位移/mm
    CUT-1 1 PSUT-A1 2 PSUT-B1 2
    CUT-2 8 PSUT-A2 9 PSUT-B2 26
    CUT-3 44 PSUT-A3 76 PSUT-B3 122
    CUT-4 140 PSUT-A4 159
    下载: 导出CSV

    表  5  结构表面跨中载荷

    Table  5.   Mid-span loads on the surfaces of the structures

    工况 测点 实测峰值压力/MPa 实测冲量/(kPa·ms) 平均峰值压力/MPa 平均冲量/(kPa·ms)
    CUT-1 IF-1 0.660 4828 0.609 4413
    PSUT-A1 IF-3 0.623 4554
    PSUT-B1 IF-10 0.545 3856
    CUT-2 IF-1 2.38 5961 2.27 5700
    PSUT-A2 IF-3 2.15 5439
    PSUT-B2 IF-10
    CUT-3 IF-1 6.36 6186 5.82 6163
    PSUT-A3 IF-3 5.53 6059
    PSUT-B3 IF-10 5.56 6245
    CUT-4 IF-1 14.57 8410 13.22 8590
    PSUT-A4 IF-3 11.86 8771
    下载: 导出CSV

    表  6  大跨跨中位移及转角

    Table  6.   Displacement and rotation in mid-span of large span

    工况 跨中最大位移/mm 最大支座转角/(°) 残余位移/mm
    CUT-1 6.9 0.57 0.8
    PSUT-A1 7.0 0.58 1.7
    PSUT-B1 8.6 0.71 1.7
    CUT-2 27.1 2.24 9.2
    PSUT-A2 27.3 2.25 10.0
    PSUT-B2 48.7 4.02 27.6
    CUT-3 76.5 6.33 48.1
    PSUT-A3 109.3 9.09 80.9
    PSUT-B3 149.1 12.49 124.6
    CUT-4 152.9 12.81 144.1
    PSUT-A4 172.4 14.52 164.3
    下载: 导出CSV

    表  7  大跨跨中峰值加速度

    Table  7.   Acceleration data in mid-span of large span

    工况 测点 加速度/g 工况 测点 加速度/g 工况 测点 加速度/g
    CUT-1 a-1 67.1 CUT-2 a-1 316.6 CUT-3 a-1 747.9
    PSUT-A1 a-1 69.0 PSUT-A2 a-1 331.9 PSUT-A3 a-1 817.2
    PSUT-A1 a-2 63.0 PSUT-A2 a-2 264.1 PSUT-B3 a-1 1301.1
    PSUT-B1 a-1 91.2 PSUT-B2 a-1 411.7
    下载: 导出CSV
  • [1] 钱七虎. 建设城市地下综合管廊, 转变城市发展方式 [J]. 隧道建设, 2017, 37(6): 647–654. DOI: 10.3973/j.issn.1672-741X.2017.06.001.

    QIAN Q H. To transform way of urban development by constructing underground utility tunnel [J]. Tunnel Construction, 2017, 37(6): 647–654. DOI: 10.3973/j.issn.1672-741X.2017.06.001.
    [2] 高徐军, 周剑, 张玉, 等. 地下综合管廊抗爆性能及加固方法研究 [J]. 工程爆破, 2023, 29(2): 145–151, 158. DOI: 10.19931/j.EB.20210409.

    GAO X J, ZHOU J, ZHANG Y, et al. Study on blast resistance performance and reinforcement method of underground utility tunnel [J]. Engineering Blasting, 2023, 29(2): 145–151, 158. DOI: 10.19931/j.EB.20210409.
    [3] WANG S P, LI Z, FANG Q, et al. Performance of utility tunnels under gas explosion loads [J]. Tunnelling and Underground Space Technology, 2021, 109: 103762. DOI: 10.1016/j.tust.2020.103762.
    [4] XUE Y Z, CHEN G H, ZHANG Q, et al. Simulation of the dynamic response of an urban utility tunnel under a natural gas explosion [J]. Tunnelling and Underground Space Technology, 2021, 108: 103713. DOI: 10.1016/j.tust.2020.103713.
    [5] MENG Q F, WU C Q, HAO H, et al. Steel fibre reinforced alkali-activated geopolymer concrete slabs subjected to natural gas explosion in buried utility tunnel [J]. Construction and Building Materials, 2020, 246: 118447. DOI: 10.1016/j.conbuildmat.2020.118447.
    [6] ZHANG S H, MA H T, HUANG X M, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel [J]. Process Safety and Environmental Protection, 2020, 140: 100–110. DOI: 10.1016/j.psep.2020.04.025.
    [7] 刘希亮, 李烨, 王新宇, 等. 地下管廊在燃气爆炸作用下的动力响应分析 [J]. 高压物理学报, 2018, 32(6): 064104. DOI: 10.11858/gywlxb.20180544.

    LIU X L, LI Y, WANG X Y, et al. Dynamic response analysis of underground pipe gallery under gas explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064104. DOI: 10.11858/gywlxb.20180544.
    [8] 刘中宪, 王治坤, 张欢欢, 等. 燃气爆炸作用下地下综合管廊动力响应模拟 [J]. 防灾减灾工程学报, 2018, 38(4): 624–632. DOI: 10.13409/j.cnki.jdpme.2018.04.005.

    LIU Z X, WANG Z K, ZHANG H H, et al. Numerical simulation of blast-resistant performance of utility tunnel under gas explosion [J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(4): 624–632. DOI: 10.13409/j.cnki.jdpme.2018.04.005.
    [9] ZHANG Z J, LIU Z X, ZHANG H, et al. Spatial distribution and machine learning-based prediction model of natural gas explosion loads in a utility tunnel [J]. Tunnelling and Underground Space Technology, 2023, 140: 105272. DOI: 10.1016/j.tust.2023.105272.
    [10] ZHAO Y M, WU J S, ZHOU R, et al. Effects of the length and pressure relief conditions on propagation characteristics of natural gas explosion in utility tunnels [J]. Journal of Loss Prevention in the Process Industries, 2022, 75: 104679. DOI: 10.1016/j.jlp.2021.104679.
    [11] WANG S P, LI Z, FANG Q, et al. Numerical simulation of overpressure loads generated by gas explosions in utility tunnels [J]. Process Safety and Environmental Protection, 2022, 161: 100–117. DOI: 10.1016/j.psep.2022.03.014.
    [12] QIAN H M, ZONG Z H, WU C Q, et al. Numerical study on the behavior of utility tunnel subjected to ground surface explosion [J]. Thin-Walled Structures, 2021, 161: 107422. DOI: 10.1016/j.tws.2020.107422.
    [13] ZHOU Q, HE H G, LIU S F, et al. Blast resistance evaluation of urban utility tunnel reinforced with BFRP bars [J]. Defence Technology, 2021, 17(2): 512–530. DOI: 10.1016/j.dt.2020.03.015.
    [14] ZHOU Q, HE H G, LIU S F, et al. Evaluation of blast-resistant ability of shallow-buried reinforced concrete urban utility tunnel [J]. Engineering Failure Analysis, 2021, 119: 105003. DOI: 10.1016/j.engfailanal.2020.105003.
    [15] 周强, 周健南, 周寅智, 等. 爆炸荷载作用下浅埋综合管廊野外试验与弹性动力响应分析 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024608. DOI: 10.1360/SSPMA-2019-0182.

    ZHOU Q, ZHOU J N, ZHOU Y Z, et al. Field test and elastic dynamic response analysis of shallow buried utility tunnel under explosion load [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2020, 50(2): 024608. DOI: 10.1360/SSPMA-2019-0182.
    [16] 夏明, 汪剑辉, 刘飞, 等. 浅埋爆炸作用下综合管廊结构动力响应数值仿真研究 [J]. 防护工程, 2020, 42(5): 25–32. DOI: 10.3969/j.issn.1674-1854.2020.05.004.

    XIA M, WANG J H, LIU F, et al. Numerical simulation study on dynamic response of utility tunnel structure under shallow-buried explosion [J]. Protective Engineering, 2020, 42(5): 25–32. DOI: 10.3969/j.issn.1674-1854.2020.05.004.
    [17] 张伟, 段亚鹏, 高永红, 等. 强动载作用下浅埋管廊结构试验研究 [J]. 信阳师范学院学报(自然科学版), 2023, 36(3): 495–501. DOI: 10.3969/j.issn.1003-0972.2023.03.025.

    ZHANG W, DUAN Y P, GAO Y H, et al. Experimental study on shallow-buried utility tunnel structure under strong dynamic load [J]. Journal of Xinyang Normal University (Natural Science Edition), 2023, 36(3): 495–501. DOI: 10.3969/j.issn.1003-0972.2023.03.025.
    [18] 刘飞, 张昭, 辛凯, 等. 基于量纲分析的地下结构顶板外爆炸荷载分布 [J]. 防护工程, 2023, 45(3): 1–8. DOI: 10.3969/j.issn.1674-1854.2023.03.001.

    LIU F, ZHANG Z, XIN K, et al. Study of blast load distribution on underground structure roof based on dimensional analysis [J]. Protective Engineering, 2023, 45(3): 1–8. DOI: 10.3969/j.issn.1674-1854.2023.03.001.
    [19] QIAN H M, LI J, PAN Y H, et al. Numerical derivation of P-I diagrams for shallow buried RC box structures [J]. Tunnelling and Underground Space Technology, 2022, 124: 104454. DOI: 10.1016/j.tust.2022.104454.
    [20] PAN Y H, LI J, ZONG Z H, et al. Experimental and numerical study on ground shock propagation in calcareous sand [J]. International Journal of Impact Engineering, 2023, 180: 104724. DOI: 10.1016/j.ijimpeng.2023.104724.
    [21] QIAN H M, LI J, ZONG Z H, et al. Behavior of precast segmental utility tunnel under ground surface explosion: a numerical study [J]. Tunnelling and Underground Space Technology, 2021, 115: 104071. DOI: 10.1016/j.tust.2021.104071.
    [22] 薛伟辰, 王恒栋, 油新华, 等. 我国预制拼装综合管廊结构体系发展现状与展望 [J]. 施工技术, 2018, 47(12): 6–9. DOI: 10.7672/sgjs2018120006.

    XUE W C, WANG H D, YOU X H, et al. Status and prospect of precast assembly utility tunnel structure system in China [J]. Construction Technology, 2018, 47(12): 6–9. DOI: 10.7672/sgjs2018120006.
    [23] 魏奇科, 王宇航, 王永超, 等. 叠合装配式地下综合管廊节点抗震性能试验研究 [J]. 建筑结构学报, 2019, 40(2): 246–254. DOI: 10.14006/j.jzjgxb.2019.02.024.

    WEI Q K, WANG Y H, WANG Y C, et al. Experiment study on seismic performance of joints in prefabricated sandwich structures of utility tunnels [J]. Journal of Building Structures, 2019, 40(2): 246–254. DOI: 10.14006/j.jzjgxb.2019.02.024.
    [24] 张学杰. 爆炸荷载作用下FRP加固钢筋混凝土柱动态响应精细化分析及损伤评估方法研究 [D]. 天津: 天津大学, 2020: 103–104. DOI: 10.27356/d.cnki.gtjdu.2020.002916.

    ZHANG X J. Research on methods for refined dynamic response analysis and damage assessment of FRP strengthened RC columns subjected to blast loading [D]. Tianjin: Tianjin University, 2020: 103–104. DOI: 10.27356/d.cnki.gtjdu.2020.002916.
    [25] HAO H, HAO Y F, LI J, et al. Review of the current practices in blast-resistant analysis and design of concrete structures [J]. Advances in Structural Engineering, 2016, 19(8): 1193–1223. DOI: 10.1177/1369433216656430c.
    [26] KRAUTHAMMER T. Modern protective structures [M]. Boca Raton: CRC Press, 2008: 234–236.
    [27] Departments of the Army the Navy, and the Air Force. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington: US Department of Defense, 2008.
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  50
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2024-03-20
  • 网络出版日期:  2024-03-21
  • 刊出日期:  2024-07-15

目录

    /

    返回文章
    返回