结构刚塑性动力解的弹性补偿

余同希 胡庆洁 朱凌

余同希, 胡庆洁, 朱凌. 结构刚塑性动力解的弹性补偿[J]. 爆炸与冲击, 2024, 44(1): 011001. doi: 10.11883/bzycj-2023-0414
引用本文: 余同希, 胡庆洁, 朱凌. 结构刚塑性动力解的弹性补偿[J]. 爆炸与冲击, 2024, 44(1): 011001. doi: 10.11883/bzycj-2023-0414
YU Tongxi, HU Qingjie, ZHU Ling. Elastic compensation for dynamic rigid-plastic solutions of structures[J]. Explosion And Shock Waves, 2024, 44(1): 011001. doi: 10.11883/bzycj-2023-0414
Citation: YU Tongxi, HU Qingjie, ZHU Ling. Elastic compensation for dynamic rigid-plastic solutions of structures[J]. Explosion And Shock Waves, 2024, 44(1): 011001. doi: 10.11883/bzycj-2023-0414

结构刚塑性动力解的弹性补偿

doi: 10.11883/bzycj-2023-0414
基金项目: 国家自然科学基金(12172265);武汉理工大学特聘教授科研启动基金(471-40120163)
详细信息
    作者简介:

    余同希(1941- ),男,博士,讲席教授,metxyu@ust.hk

  • 中图分类号: O383

Elastic compensation for dynamic rigid-plastic solutions of structures

  • 摘要: 近年来,我国学者以膜力因子法和饱和分析方法相结合为理论工具,对梁、板等结构件在脉冲载荷作用下的塑性大变形行为作了全面深入的研究,为脉冲加载下结构的最终挠度提供了优于历史上各种刚塑性近似解的最佳刚塑性预测公式。然而,由于实际工程应用中金属结构弹塑性动力响应的复杂性和数值模拟的局限性,与考虑材料弹性效应的结果相比,刚塑性解对脉冲加载下结构所预测的最终挠度的误差有多大,是一个亟待解决的关键问题。对这个问题的首阶段研究成果厘清了材料弹性对脉冲加载下结构塑性动态大变形的影响,定量评估了由最佳刚塑性理论解与弹塑性数值模拟得到的最终挠度预测结果之间的差异。在此基础上,提出了补偿弹性效应的策略和方法,即:在已有的最佳刚塑性解预测的挠度基础上添加一个补偿项,将补偿项表达为脉冲载荷强度的效应与结构自身刚度的效应分离的变量函数,并尽量减少待定系数/指数的数量,以求表达式的简洁;根据这些原则在金属结构的主要工程应用领域内选定结构刚度和外载参数的变化范围,对固支梁和固支方板的案例实施拟合与补偿,最后得到了对梁和板增添补偿项后的简单而实用的最终挠度预测公式,其相对误差在3%的范围之内,很适合工程设计应用。文末列表给出了符号与公式的一览,并对梁和方板的结果作了综合和比较。
  • 图  1  固支梁和它承受的矩形脉冲[13]

    Figure  1.  A fully-clamped beam and a rectangular pressure pulse it bears[13]

    图  2  对于承受矩形脉冲的固支梁,刚塑性解预测的最终挠度的相对偏差与能量比的关系[13]

    Figure  2.  Discrepancies in the final deflection predicted by the rigid-plastic solution varying with the energy ratio for fully-clamped beams subjected to rectangular pressure pulse[13]

    图  3  对于固支梁与固支方板,刚塑性解预测的最终挠度的相对偏差随无量纲载荷幅值的变化[14]

    Figure  3.  Discrepancies in the final deflection predicted by the rigid-plastic solutions varying with dimensionless loading parameter for fully-clamped beams and square plates[14]

    图  4  对于固支方板,不同泊松比下刚塑性解预测的最终挠度的相对偏差与无量纲载荷幅值的关系

    Figure  4.  Discrepancies in the final deflection predicted by the rigid-plastic solutions varying with dimensionless loading parameter for fully-clamped square plates under different Poisson’s ratios

    图  5  无量纲最终挠度与无量纲脉冲压力幅值之间的关系

    Figure  5.  Relationship between the dimensionless final deflection and the dimensionless loading parameter

    图  6  常用金属板的结构刚度同半边长与板厚之比之间的关系

    Figure  6.  Relationship of structural stiffness and half length-to-plate thickness ratio for commonly-used metallic plates

    图  7  按式(8)作出补偿后,式(9)预测的固支梁最终挠度的相对偏差

    Figure  7.  By adding the compensation given in Eq. (8), the relative discrepancies in the final deflection of fully-clamped beams as predicted by Eq. (9)

    图  8  补偿前(实线)和按式(8)作补偿后(虚线)与弹塑性有限元模拟得到的固支梁最终挠度之间的相对偏差

    Figure  8.  The relative discrepancies in the final deflection of fully-clamped beams between rigid-plastic predictions (solid lines displaying before compensation, and broken lines displaying after compensation given by Eq.(8)) and elastic-plastic simulation results

    图  9  按式(10)作出补偿后,式(11)预测的固支方板最终挠度的相对偏差

    Figure  9.  By adding the compensation given in Eq. (10), the relative discrepancies in the final deflection of fully-clamped plates as predicted by Eq. (11)

    图  10  按式(12)作出补偿后,式(13)预测的固支方板最终挠度的相对偏差

    Figure  10.  By adding the compensation given in Eq. (12), the relative discrepancies in the final deflection of fully-clamped plates as predicted by Eq. (13)

    表  1  低碳钢和铝合金的材料性质

    Table  1.   Material properties of mild steel and aluminum alloys

    材料 杨氏模量E/GPa 泊松比μ 屈服应力Y/MPa
    低碳钢Q235 210 0.3 235
    铝合金6061 71 0.3 240
    铝合金7075 71 0.3 505
    下载: 导出CSV

    表  2  金属板的半边长与板厚之比 的常用范围

    Table  2.   Commonly-used ranges of half length-to-plate thickness ratio for metallic plates

    工程领域 a/h
    船舶海洋结构 10~125
    汽车与运载机械 150~900
    航空航天结构 80~1500
    下载: 导出CSV

    表  3  主要结果整理及固支梁与固支方板的比较

    Table  3.   Summary of main results as well as comparison of fully-clamped beams and plates

    项目 固支梁(矩形截面) 固支方板
    几何参数长度2L,宽度b,厚度h边长2a,厚度h
    材料参数杨氏模量E,屈服应力Y杨氏模量E,泊松比μ,屈服应力Y
    塑性极限弯矩Mp = Ybh2/4M0 = Yh2/4
    准静态坍塌压力线载荷pY = 4Mp/(bL) = Yh2/L面载荷pY = 12M0/a2 = 3Yh2/a2
    无量纲压力λp0/pY
    结构刚度ζ$ {\zeta}_{\text{beam}}\text{≡}\dfrac{{h}}{{L}}\sqrt{\dfrac{{E}}{{Y}}} $$ {\zeta}_{\text{plate}}\text{≡}\dfrac{{h}}{{a}}\sqrt{\dfrac{{E}}{{Y}({1}-\mu )}} $
    最佳刚塑性解预测的最终挠度$ {\eta}_{\text{f}}^{\text{rp}}\text{≡}\dfrac{{{w}}_{\text{0f}}^{\text{rp}}}{{h}}={1.10}{ \lambda }{-}{0.414} $$ {\eta}_{\text{f}}^{\text{rp}}\text{≡}\dfrac{{{w}}_{\text{0f}}^{\text{rp}}}{{h}}={2.16}{ \lambda }{-}{1.456} $
    刚塑性解加上弹性补偿后预测的最终挠度$ {\eta}_{\text{f}}^{\text{*}}={1.10}{ \lambda }{-}{0.414+} ({-}{0.08}{ \lambda }{+0.29)}{\zeta}^{{-0.9}} $$ {\eta}_{\text{f}}^{\text{*}}={2.160}{ \lambda }{-}{1.456+} {(0.03}{{ \lambda }}^{2}{-}{0.33}{ \lambda }{+0.85)}{\zeta}^{{-0.4}} $
    弹塑性模拟得到的最终挠度$ {\eta}_{\text{f}}^{\text{ep}}\text{≡}\dfrac{{{w}}_{\text{0f}}^{\text{ep}}}{{h}} $
    上述二者之间的相对偏差$ {{D}}_{\eta}^{\text{*}}=\dfrac{{\eta}_{\text{f}}^{\text{*}}-{\eta}_{\text{f}}^{\text{ep}}}{{\eta}_{\text{f}}^{\text{ep}}}{\text{≤}}3\text{%} $
    下载: 导出CSV
  • [1] JOHNSON W. Impact strength of materials [M]. London: Edward Arnord, 1983.
    [2] JONES N. Structural impact [M]. 2nd ed. Cambridge: Cambridge University Press, 2011.
    [3] STRONGE W J, YU T X. Dynamic models for structural plasticity [M]. Berlin: Springer-Verlag, 2012.
    [4] 余同希, 邱信明. 冲击动力学 [M]. 北京: 清华大学出版社, 2011.
    [5] SYMONDS P S, FRYE C W G. On the relation between rigid-plastic and elastic-plastic predictions of response to pulse loading [J]. International Journal of Impact Engineering, 1988, 7(2): 139–149. DOI: 10.1016/0734-743X(88)90022-X.
    [6] YU T X. Elastic effect in the dynamic plastic response of structures [M]//JONES N, WIERZBICKI T. Structural Crashworthiness and Failure. London: Springer-Verlage, 1993: 341–384. DOI: 10.1201/9781482262544.
    [7] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010−2020) [J]. 爆炸与冲击, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.

    YU T X, ZHU L, XU J. Progress in structural impact dynamics during 2010−2020 [J]. Explosion and Shock Waves, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.
    [8] 余同希, 朱凌, 陈发良. 饱和冲量与膜力因子法: 强动载荷下结构塑性大变形的分析和预测方法 [M]//陈建康, 白树林. 材料的非线性力学性能研究进展. 北京: 机械工业出版社, 2021: 17–29.
    [9] 余同希, 田岚仁, 朱凌. 强脉冲载荷作用下结构塑性大变形的最大挠度直接预测 [J]. 力学学报, 2023, 55(5): 1113–1123. DOI: 10.6052/0459-1879-22-607.

    YU T X, TIAN L R, ZHU L. Direct prediction of maximum deflection for plastically deformed structures under intense dynamic pulse [J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1113–1123. DOI: 10.6052/0459-1879-22-607.
    [10] 朱凌, 田岚仁, 李德聪, 等. 饱和冲量及其等效方法在舱室内爆炸中的应用 [J]. 中国舰船研究, 2021, 16(2): 99–107. DOI: 10.19693/j.issn.1673-3185.01876.

    ZHU L, TIAN L R, LI D C, et al. Saturated impulse and application of saturation equivalent method in cabin explosion [J]. Chinese Journal of Ship Research, 2021, 16(2): 99–107. DOI: 10.19693/j.issn.1673-3185.01876.
    [11] TIAN L R, CHEN F L, ZHU L, et al. Saturated analysis of pulse-loaded beams based on Membrane Factor Method [J]. International Journal of Impact Engineering, 2019, 131: 17–26. DOI: 10.1016/j.ijimpeng.2019.04.021.
    [12] TIAN L R, CHEN F L, ZHU L, et al. Large deformation of square plates under pulse loading by the combination of Saturated Analysis and Membrane Factor Method [J]. International Journal of Impact Engineering, 2020, 140: 103546. DOI: 10.1016/j.ijimpeng.2020.103546.
    [13] HU Q J, ZHU L, YU T X. Elastic effects on the dynamic plastic deflection of pulse-loaded beams [J]. International Journal of Impact Engineering, 2023, 176: 104550. DOI: 10.1016/j.ijimpeng.2023.104550.
    [14] HU Q J, ZHU L, YU T X. Elastic effect on the final deflection of rigid-plastic square plates under pulse loading [J]. Thin-Walled Structures, 2023, 193: 111238. DOI: 10.1016/j.tws.2023.111238.
    [15] YOUNGDAHL C K. Correlation parameters for eliminating the effect of pulse shape on dynamic plastic deformation [J]. Journal of Applied Mechanics, 1970, 37(3): 744–752. DOI: 10.1115/1.3408605.
    [16] YOUNGDAHL C K. Influence of pulse shape on the final plastic deformation of a circular plate [J]. International Journal of Solids and Structures, 1971, 7(9): 1127–1142. DOI: 10.1016/0020-7683(71)90057-6.
    [17] ZHU L, TIAN L R, CHEN F L, et al. A new equivalent method for complex-shaped pulse loading based on saturation analysis and membrane factor method [J]. International Journal of Impact Engineering, 2021, 158: 104018. DOI: 10.1016/j.ijimpeng.2021.104018.
    [18] CHEN F L, TIAN L R, YU T X, et al. Complete solution of large plastic deformation of square plates under exponentially decaying pulse loading [J]. Acta Mechanica Solida Sinica, 2021, 34(6): 922–936. DOI: 10.1007/s10338-021-00280-6.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  173
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-15
  • 修回日期:  2023-12-18
  • 网络出版日期:  2023-12-25
  • 刊出日期:  2024-01-11

目录

    /

    返回文章
    返回