Research progress on hydrogen gas explosion suppression materials and their suppression mechanisms
-
摘要: 氢气在全球清洁能源转型中扮演着关键角色,但其可燃性和高爆炸危害性也使得氢气安全成为研究热点。聚焦氢气抑爆领域的最新研究成果,对不同种类抑爆材料及抑爆机理进行了综合评述。首先,介绍了气体、液体、固体以及多相复合抑爆材料的研究进展,对比分析了抑爆效果、关键参数及其变化规律。其次,探讨了抑爆材料影响氢气爆炸的物理、化学以及物理化学综合的作用过程,以揭示各类材料的抑爆机理。最后,展望了氢气抑爆材料的未来发展趋势,强调对高效能抑爆材料探索和机理研究的深化以及在实际应用中所面临的诸多挑战。Abstract: Hydrogen is crucial in the global shift towards clean energy and is gaining significance in the energy industry, while its high flammability and explosive hazard make its safety a research hotspot. It is crucial to thoroughly investigate and assess the safety of hydrogen as it progresses toward commercialization in the energy sector. This article reviews the latest advancements in hydrogen explosion suppression conducted by researchers around the world, aiming at offering a scientific foundation and technical approach to efficiently manage and reduce the damaging impacts of hydrogen explosion incidents. The article focuses on the study of hydrogen explosion suppression materials and their suppression mechanisms, so as to provide scientific understanding and technical support for the safe application of hydrogen. Firstly, it systematically introduces the research progress in hydrogen explosion suppression by discussing four significant categories, i.e., gas, liquid, solid, and multiphase composite explosion suppression materials. By comparing and analyzing the effects, key performance parameters, and the variation rules of these materials, the current research status and effectiveness of various explosion suppression materials are sorted out, helping to deepen the understanding of the explosion suppression effects of these materials. Secondly, focusing on the suppression mechanism, the research delves into the vital role of explosion suppression materials in suppressing hydrogen explosions. Starting from three dimensions, i.e., physical suppression, chemical suppression, and physicochemical comprehensive suppression, it elucidates the mechanisms of action of explosion suppression materials in the suppression process, contributing to a deeper understanding of the role of explosion suppression materials in suppressing or mitigating hydrogen explosions. Finally, the article looks forward to the future development directions of hydrogen explosion suppression materials, especially emphasizing the importance of further studies on the high-efficiency explosion suppression materials and the challenges faced in practical applications. This review is aimed to provide scientific reference and inspiration for the research, development, and application of new hydrogen explosion suppression materials.
-
恐怖爆炸袭击的对象一般是办公楼、酒店、商场等人员相对密集集中的建筑,这些建筑70%由砌体结构构成,且多未考虑抗爆设计。当爆炸发生时,往往会造成砌体构件破坏或结构倒塌,并伴随大量高能碎片[1-2],从而对人员产生二次杀伤。因此,如何提高砌体结构的抗爆性能一直是研究中的热点。
聚脲在低应变率下表现为高延性和超弹性,在高应变率下具有率敏感性,理论上具有较好的抗爆性能,目前已在防护领域中得到应用[3-5]。Davidion等[6]通过多组全尺寸爆炸试验,发现聚脲加固可以显著提高混凝土砌块墙的抗爆能力,同时延性较高的聚脲比其他高刚度复合材料可以更有效地阻止破片飞散和墙体倒塌。蔡桂杰[7]通过砖墙抗爆试验发现,背爆面喷涂聚脲的砖墙抗爆性能优于在迎爆面喷涂,指出喷涂聚脲厚度在3~9 mm范围内时,砖墙抗爆性能随喷涂厚度增加而增强。Lqbal等[8]发现聚脲喷涂厚度为6 mm可以发挥最大抗爆效果,增加聚脲厚度可能导致聚脲与结构剥离失效,但剥离后的聚脲涂层仍可限制高速碎片的产生[9]。然而,上述试验研究中多存在冲击波在墙体试件边缘发生绕射的干扰,造成爆炸荷载作用机制不清。且已有研究主要通过定性的分析破坏形态,总结强动载作用下加固结构的位移极限,缺少针对砖墙抗爆加固设计的定量计算方法。
砖墙构件的抗爆设计计算一般是基于等效单自由度法(equivalent single degree of freedom, ESDOF)。Biggs[10]、UFC 3-340-2中[11]和Urgessa等[12]分别对单向砌体墙和双向混凝土板的系统单自由度等效过程、转换系数和抗力函数给出了建议取值。基于上述方法计算的砖墙等构件的超压-冲量曲线(pressure-impulse, P-I),也常用于工程抗爆设计和评估[13-15]。但是,在基于ESDOF方法研究聚脲加固砖墙的抗爆性能时,通常会将聚脲和砖墙两者耦合简化为单一均质材料,并忽视了聚脲涂层面的内张力。Irshidat等[16]将聚脲与砖墙的抗力分别计算,提出了聚脲加固单向砖墙的抗力函数,但并不适用于双向砌体墙的抗爆加固计算。
本文基于一种经过防绕流改进的大型爆炸试验,分别针对聚脲喷涂加固及未加固的原型黏土砖框架填充墙试件开展爆炸加载试验,量测冲击波超压、冲量和砖墙挠度等时程数据,分析不同当量TNT爆炸作用下两种墙体试件的变形响应特征,归纳聚脲加固砖墙的爆炸失效模式和破坏特征;分别考虑砖墙及聚脲对墙体抗力的贡献,构建聚脲加固双向砌体墙的ESDOF模型和求解方法。
1. 聚脲加固砖墙抗爆试验
1.1 试验装置及试件制作
爆炸试验过程中,空气冲击波在墙体边缘形成的稀疏波以及墙后绕射会影响墙体的真实抗爆动力响应。为此,本文专门改进设计了如图1所示的防绕流爆炸试验装置,试验前在特制的钢筋混凝土(reinforced concrete, RC)框架中预制砖墙,通过螺栓将养护后的砖墙框架固定在图1所示的爆炸试验装置上。爆炸试验装置通过RC腔室将边缘稀疏波以及墙后绕射波隔绝,可以测得仅正面冲击波作用下墙体的真实响应。通过在填充墙体试件的背爆面喷射聚脲涂层进行抗爆加固,喷涂完成后通过四周角钢把聚脲层边界固定在RC框架上,以防出现边界剪切破坏,加固后的砖墙如图1所示。
框架填充墙墙体试件选用黏土空心砖,单个黏土空心砖的几何尺寸为24 cm×10 cm×4.5 cm,砖块间砌筑的砂浆厚度为1 cm,具体力学参数见表1,砌筑方式为全顺。试件墙面净跨为2 m×3 m,共制作了4面试验墙体,其中2面墙为未加固墙体试件,2面墙为背爆面喷涂聚脲加固试件。试验加固用聚脲抗爆涂层材料的聚脲断裂应变为2.5~3.4,真实失效应变约为1.2。加固施工过程中采用高压喷涂技术施工,在砖墙背爆面一次喷涂成型,不产生流挂现象,涂层厚度为0.6 cm。聚脲抗爆涂层材料的基本力学参数见表2。
表 1 砖和砂浆的力学参数Table 1. Material parameters of brick and mortar材料 密度/(kg·m−3) 杨氏模量/MPa 泊松比 抗拉强度/MPa 剪切强度/MPa 屈服强度/MPa 砖 1200 897 0.15 5.5 5.5 14.1 砂浆 2100 913 0.25 3.5 3.5 7.03 表 2 聚脲的力学参数Table 2. Polyurea material parameters密度/(kg·m−3) 杨氏模量/MPa 泊松比 抗拉强度/MPa 屈服强度/MPa 切线模量/MPa 真实失效应变 1150 80 0.17 15 5.5 14.1 1.2 1.2 试验装置与量测
图2为试验装置及测量方案。试验前在RC框架中预制砖墙,通过螺栓将养护后的砖墙框架固定在试验装置上。试验中主要量测墙体上的爆炸荷载超压和墙体位移时程数据,超压和位移测点布置如图2所示。其中,墙体迎爆面空气冲击波压力测点有3个,为了防止墙体变形过程中传感器遭到破坏,压力传感器(PCB 102B04)布置在与墙体试件相同距离、同一水平高度的特制钢板上,测量范围为0~6.8 MPa,对应于墙体的超压测点(P1、P2、P3)位置如图2所示。墙体构件位移测点有3个(D1、D2、D3),使用接触式LVDT位移传感器,传感器垂直安装在防绕流爆炸试验装置内,传感器端头用角钢固定在背爆面上,位移传感器量程为±200 mm,位移传感器布置如图2所示;试验数据采集由DH8302N高速数采完成,采样频率为0.5 MHz。
1.3 试验工况
为了保证爆炸超压测试数据与墙面实际超压一致,降低炸药形状的影响,试验采用铸药的方式制作了圆柱形TNT药柱,药柱轴线方向与墙面平行,通过空中爆炸对砖墙施加冲击波荷载。炸药中心距地面1.5 m,距墙面3.0 m,共计开展了4个炮次的爆炸试验,炸药当量和试验工况见表3。
表 3 试验工况Table 3. Test conditions试验 聚脲厚度/mm 比例爆距/(m·kg−1/3) 装药当量/kg 1 0 1.89 4 2 0 1.39 10 3 6 1.89 4 4 6 1.39 10 1.4 试验结果和分析
1.4.1 失效破坏特征
图3为不同爆炸工况下墙体试件的损伤破坏情况。其中,4 kg TNT爆炸作用下试验1墙体中部出现轻微发育裂隙,墙体发生轻微的X状裂缝;相同荷载条件下,加固墙体(试验3)并未产生裂隙。随着TNT装药增加达到10 kg,砖墙受到的冲击波荷载明显增大,试验2墙体发生局部剪切破坏和坍塌,如图3(b)所示,试件2中部出现了尺寸约为1.0 m×1.5 m的局部坍塌;10 kg TNT爆炸荷载作用下加固砖墙破坏如图3(d)所示,可以发现,虽然在墙体边界和中部均出现了多条较大的裂缝,但并未出现倒塌,墙体整体呈现典型的“X”状双向板弯曲破坏形态。分析结果表明,聚脲加固不但可以增加结构抗力,而且可以使砖墙的破坏形态由局部剪切的脆性破坏转变为延性弯曲破坏。
图4给出了爆炸后试验3、4中聚脲加固砖墙背爆面的聚脲变形情况。可以发现,试件2背爆面聚脲涂层光滑、平整、无裂缝,无明显变化。当荷载增加至10 kg时,背爆面聚脲虽未发生破坏,但是也出现了褶皱现象。对比图3(d),发现图4(b)的褶皱位置与正面裂缝对应,裂缝与褶皱分布位置与图3(b)中为加固墙体剪切破洞位置接近,进一步说明了背爆面喷涂聚脲可以有效限制爆炸作用下砖墙的局部剪切脆性破坏,大幅降低砖墙的倒塌风险。
1.4.2 爆炸荷载
图5(a)为试验测得的爆炸工况3、4下墙面各测点的典型反射冲击波超压时程曲线,由此可计算出图5(b)所示的冲量曲线。对比4 kg TNT爆炸作用下测点P1的反射超压峰值为1.01 MPa,较测点P2的反射超压峰值增加了10%。10 kg TNT爆炸作用下P1测得的反射超压峰值为4.61 MPa,较测点P2的反射超压峰值2.14 MPa增加约35%。与4 kg TNT爆炸试验相比,10 kg TNT爆炸试验中测点P1的超压峰值提升了356%,测点P2的超压峰值提升了137%。由于T4试验药柱长度更长,造成试验4中测点P1、P2的压力差值较大。整体来看,P1点的冲量计算结果与相同比例距离下依据TM-5-855-1规范[17]得到的计算结果对比吻合度较高,如表4所示。10 kg TNT爆炸作用下测点P1冲量为824 Pa·s,相比4 kg TNT作用下P1受到的冲量提升了269%;测点P2冲量为335 Pa·s,相比4 kg TNT作用下P2受到的冲量提升了123%。可以发现,随着装药增加砖墙受到爆炸超压和冲量都显著增大,试件更易发生剪切破坏。
表 4 爆炸荷载验证Table 4. Explosion load verification装药/kg 冲量/(Pa·s) 误差/% 测点P1 文献[17]方法 4 306 400 23.5 10 824 790 4.3 1.4.3 位移响应
根据规范UFC-3-340-02[11] 中砌体墙破坏准则,支座转角被用来作为分类损伤等级的指标,如表5所示。对于双向墙而言,爆炸作用下砖墙支座转角的可修复限值为0.5°,不可修复限值为2°,经过反算,两种限值对应试验中墙体试件的跨中点挠度分别为8.72和34.9 mm。
图6为试验中测得的不同装药设计条件下聚脲加固(polyurea reinforcement, PR)和未加固墙体D1测点的位移时程曲线。如图6(a)所示,试验1中未加固砖墙D1测点的最大正向位移达到21 mm,反向位移为12.5 mm,损伤等级为可修复损伤;而砖墙加固后,在试验3中D1测点的最大位移仅为16 mm,反向位移为18.5 mm。两者损伤等级虽同样为可修复损伤,但聚脲加固后试件在相同荷载作用下最大位移降低了23.8%,砖墙抗爆性能显然得到了大幅提升。
图6(b)为10 kg TNT爆炸荷载作用下加固和未加固墙体的最大位移均明显超过规范的允许值。其中,试验2中,未加固墙体试件的跨中点D1位移达到150 mm后,墙体中心部位发生局部剪切破坏而倒塌。而试验4中,加固后墙体试件D1测点最大位移达到了193 mm,填充墙体与框架边界及墙面均出现较大裂缝,但墙体并未发生倒塌破坏。聚脲加固后墙体最大延性至少可提升28.7%。对比可以发现,喷涂聚脲可显著增加砖墙加固墙体抗爆能力,大幅增大构件延性,并阻止墙体出现剪切局部破坏。
1.4.4 单面聚脲加固作用机理
图6(a)中4 kg TNT爆炸作用下未加固框架填充墙的跨中点最大正向位移比反向最大位移大68%,而加固砖墙的正向最大位移反而比反向最大位移小15.6%。图7(a)给出了进一步提取的4 kg TNT爆炸作用下加固砖墙D1测点的位移时程曲线。抓取测点的平衡位置到振动峰值位置的运动时间,得到4个时间段内砖墙的平均自振频率(
ω )。计算发现加固砖墙在4个时间段的平均振动频率并非定值,在一个振动周期内平均振动频率逐渐下降,并呈周期性变化,如图7(b)所示。假定构件质量不发生变化,由ω=√K/M 可以反推得到加固砖墙刚度K[18]也呈周期性变化,加固砖墙正向振动过程中加固砖墙刚度较反向振动增加了133%。说明加固墙体的振动过程中,背爆面喷涂的聚脲涂层对加固墙体正反向振动变形刚度的贡献不一样,对于正向变形的刚度增加贡献较大,而对于反向反弹变形的刚度贡献较小。图8给出了墙体受荷振动变形过程中,跨中点D1附近局部砖砌体的受力情况。墙体正向运动过程中墙体发生弯曲变形,背爆面局部砖块间出现如图8(b)所示的拉伸变形,此时聚脲涂层则在砖块间拉伸变形方向上提供反向拉力T,且作用力位置与砖块间拉伸变形位置重合。此时,聚脲拉力T和砂浆与砖块之间粘接力
fvm 可共同为加固砖墙提供抗力。墙体反向运动时,墙体迎爆面局部砖块间出现如图8(a)的拉伸变形,此时背爆面聚脲变形较小,因而提供的拉力T较小,且拉力作用点位置相对于砖块间拉伸变形位置偏移了一个墙厚的距离,对加固砖墙抵抗变形的抗力贡献较小,因此,相同变形情况下,背爆面聚脲加固砖墙正向弯曲抗力较负向弯曲抗力更大。如图3(a)所示,4 kg TNT爆炸作用下未加固砖墙出现明显裂缝,这是因为墙体构件材料局部损伤导致砖墙变形过程中能量耗散,从而造成反向位移峰值的下降。相同荷载作用下加固砖墙并未出现明显裂缝,正向最大位移未达到损伤标准,能量耗散较少,且墙体反向变形的抗力较正向变形抗力低,导致墙体试件反向最大位移增加。此时若聚脲与墙体表面的黏结力不足,有可能导致墙体发生反向反弹破坏。1.5 聚脲加固砖墙的失效破坏机理
出于安全考虑,试验中各工况设计的爆炸比例爆距较为适中,试验工况中聚脲涂层并未出现明显的失效破坏。为进一步研究聚脲加固砖墙的失效破坏机理,选择文献[19]的相关数据进行了比较分析,该文献报告了近距离爆炸作用下聚脲加固砖墙的一系列试验结果,其试验设计如表6所示。
结合文献[19]中报告的爆炸试验结果和本文爆炸试验结果可以发现,随着试验比例爆距和喷涂聚脲厚度d不断降低,砖墙背爆面聚脲涂层出现撕裂、鼓包和剥离。当比例爆距达到0.584 m/kg1/3时背爆面出现裂缝;比例爆距为0.35 m/kg1/3时,背爆面出现局部震塌破坏,该位置附近的聚脲涂层出现明显鼓包和剥离,而聚脲涂层有效的限制了背爆面砖墙碎片的飞散,如图9所示(图中Z为比例爆距)。
可以认为,砖墙背爆面聚脲涂层的失效破坏特征主要与聚脲厚度及比例爆距相关,爆炸作用下聚脲涂层失效主要为局部撕裂或鼓包。因此,如图10所示,可根据比例爆距Z和涂层厚度d将聚脲加固砖墙的失效模式划分为以下3种:
(1)当Z≥1.89 m/kg1/3时,墙体呈现典型的双向板弯曲破坏形态;如图10(b)所示,聚脲涂层会随着局部砖块与砖块间的弯曲开裂而发生拉伸变形,通常极限拉伸应变会超过砖块高度的1.5倍[6];
(2) 当Z≤0.584 m/kg1/3且d≤3 mm时,砖块间的剪切变形超过了聚脲的极限剪切失效应变,聚脲材料本身发生断裂,此时结构会出现局部剪切破坏,如图10(c)所示;
(3) 当Z≤0.35 m/kg1/3且d≥6 mm时,爆炸冲击波的波动效应导致砖墙背爆面震塌,震塌位置的聚脲与墙体发生剥离,出现局部鼓包破坏,如图10(d)所示。
2. 聚脲加固砖墙抗爆的简化计算方法
2.1 ESDOF分析方法
由于试验中聚脲加固砖墙在爆炸荷载作用下主要呈弯曲破坏,因此可以采用等效单自由度模型(ESDOF)来进行简化计算。由达朗贝尔原理建立聚脲加固砖墙体系的等效动力微分方程为:
KMLm¨z(t)+R(z)=F(t) (1) 式中:
KML=KM/KL 为弹性阶段等效质量荷载系数,KM 为质量系数,KL 为荷载系数,z为垂直于墙面方向的动位移,本文中即为挠度;R(z) 为构件抗力函数;F(t) 为瞬时动态作用力函数。根据运动方程和能量方程,可以得到等效体系的抗力系数KR、荷载系数KL和质量系数KM为KR=KL=1A∬Aψ(x,y)dxdy (2) KM=1A∬Aψ2(x,y)dxdy (3) 式中:
ψ(x,y) 为双向墙体的振形函数,A为墙体面积;根据Biggs的建议[10],弹性阶段KL=0.64,KM=0.5;塑性阶段构件KL=0.5,KM=0.33。2.2 聚脲加固双向填充墙抗力模型
图11为在爆炸荷载作用下双向墙体结构弯曲变形示意图,图中,a、b分别为结构长短边长度,S1、S2为挠曲线长度,θa、θb为支座转角,z为挠度,假定加固材料形成的膜与结构之间无粘结[8]。
此时砖墙结构抗力函数可以表示为:
R1(z)={Kezz<zeRuze<z<zm (4) 式中:
R1(z) 为未加固砖墙的抗力函数;Ke 为初始刚度[10],由UFC-3-340-02规范[17]计算得到1.77×107 N/m;ze 、zm 分别为弹、塑性极限挠度,支座的允许转角θa、θb为2°,Ru 为塑性阶段的抗力限值,可由公式Ru=5(Mfa+Msa)ab/z2 计算得到,其中,Mfa 和Msa 为固定边界及跨中处单位长度弯矩抗力。对于聚脲涂层,其抗弯刚度很小,聚脲涂层可简化与墙体平行的为面力,其应力-应变关系满足胡克定律,砖墙弯曲时聚脲沿长边和短边方向的应力为:
σ1=E(S1−b)b (5) σ2=E(S2−a)a (6) 式中:
σ1 和σ2 为长边和短边方向的应力;E 为聚脲材料的弹性模量;S1 和S2 为挠曲线长度,a、b 为长短边长度。得到聚脲的抗力函数Rv 为:Rv=Ta sinθ1+Tb sinθ2=naσa sinθa+nbσb sinθb (7) 式中:
Ta 、Tb 为聚脲涂层短边和长边方向拉应力;n为应变强化指数,n取4[4]。加固砌体墙结构的抗力函数为:
R(z)={R1(z)+Rvz<zmRvzm≤z (8) 需要注意的是,基于1.3节的研究可以发现,爆炸作用下加固砖墙振动过程中等效刚度是变化的,因此抗力模型仅适用于正向弯曲条件下加固砖墙体系变形求解。
3. 求解方法和模型验证
3.1 求解方法
将迎爆面的爆炸荷载等效为均布载荷[21]:
F=−12F1+F2+76F3−23F4 (9) 式中:F为等效均布荷载峰值,
F1 为结构表面中心处反射超压峰值,F2、F3 为长边、短边中点反射超压峰值,F4 为边角处反射超压峰值。试验中测得的4 kg TNT等效均布荷载峰值为477 kPa。荷载作用时间Δt为:
Δt=2I1F (10) 式中:
I1 为墙中心爆炸波正反射冲量。振型函数为:ψ(x,y)=sinπxasinπyb (11) 将爆炸空气冲击波荷载简化为突加线性衰减的冲击波,将此种形式的荷载作为动载代入式(1),本文采用预估-校正形式的显式Newmark方法[22],求解得到等效单自由度体系的位移时程解。
3.2 模型验证
以试验中聚脲加固砖墙为计算对象,采用数值模拟的方法对ESDOF计算结果进行对比验证。有限元计算模型中,砌块与砂浆接触方式采用共节点,砌体墙与框架、聚脲的接触为固连失效接触。砖和砂浆的压缩和拉伸动力放大因子为1.2[23-24],砌块的失效应变为0.02。文献[25]已经验证了上述数值计算模型的可靠性。
图12为ESDOF计算结果与数值模拟和试验结果对比。其中,4 kg TNT爆炸作用下加固墙体位移响应的三种计算结果如图12(a)所示,ESDOF模型计算得到的D1正向最大位移为16.7 mm,数值模拟中D1最大位移为13.2 mm,与试验相比两者分别增加5%和−17.5%。说明,有限元分析结果与试验结果相比,其接触算法高估了砌块与砂浆的接触力,体系具有更大的抗力;ESDOF方法基于实际工况分别考虑了砖墙及聚脲对墙体抗力的贡献,其计算结果与试验结果相比具有更好的一致性。
10 kg TNT爆炸作用计算过程中发现,砖墙边界出现及墙面出现如图7(d)的剪切滑移。ESDOF模型则是采用固定边界的假定,故ESDOF模型在D1位置理论解比试验低了10.5%。而数值模拟采用了删除单元算法,所以构件质量下降刚度降低,导致模拟中D1位置的最大位移比试验大12.6%。总体而言,ESDOF模型与数值模拟相比可以更加准确地计算出砖墙的正向位移响应过程。
4. 结 论
基于一种改进的大型爆炸试验装置,开展了聚脲加固框架砖填充墙的原型爆炸试验,分析了爆炸荷载作用下加固砖墙的动力响应特征和破坏过程及模式,揭示了其失效破坏机理,建立了聚脲加固双向墙抗爆性能的理论计算模型,得到以下主要结论:
(1) 喷涂聚脲抗爆涂层可以显著增加框架填充墙的抗爆性能,增加墙体的延性,且可将墙体的局部剪切脆性破坏转变为典型的弯曲延性破坏;
(2) 墙体受爆炸荷载作用来回振动过程中,背爆面喷涂加固产生的聚脲拉力对砖块间的拉伸变形与墙体振动变形抗力的贡献机制不同,导致墙体抵抗正向变形抗力高,抵抗负向变形抗力低,不同时段墙体的最大平均变形刚度较最小平均变形刚度增加了133%;
(3) 根据比例爆距不同确定了聚脲加固砖墙的三种不同失效破坏模式;当爆炸比例爆距大于等于1.89 m/kg1/3时,墙体呈现典型的双向板弯曲破坏形态;当爆炸比例爆距不超过0.584 m/kg1/3且聚脲厚度不超过3 mm时,墙体呈现局部剪切破坏;当比例爆距不超过0.35 m/kg1/3且聚脲厚度大于等于6 mm时,聚脲与墙体发生剥离,出现局部鼓包破坏;
(4) 提出的改进ESDOF方法可以较为准确地预测爆炸作用下背爆面加固双向砖墙的正向位移响应过程,为相似工程设计提供理论计算参考和依据。
-
表 1 近年氢气泄漏爆炸事故
Table 1. Recent hydrogen gas leak explosion incidents
事故时间 事故地点 事故原因 事故后果 2018年3月12日 中国江西省九江市一石化企业 柴油加氢装置原料缓冲罐超压爆炸着火 2人死亡,1人受伤
直接经济损失约338万元2019年5月23日 韩国江原道江陵市 在水电解氢气试验的过程中,因操作失误而导致爆炸 2人死亡,6人受伤 2019年6月1日 美国加州圣塔克拉拉一化工厂 储氢罐发生泄漏爆炸 无人伤亡,经济损失数万美元,
当地氢燃料供应被迫中断2019年6月 挪威桑维卡一合营加氢站 高压储氢罐一特殊插头装配错误 2人受伤
经济损失约2亿欧元2019年12月 威斯康星州沃基工厂 储氢区发生爆炸起火 1人受伤 2020年1月14日 中国珠海长炼石化设备有限公司 重整加氢装置预加单元发生闪爆 无人伤亡
直接经济损失198万元2020年4月 美国北卡州朗维尤一氢燃料工厂 加氢站爆炸 无人伤亡,损失数百美元 2021年8月4日 中国辽宁沈阳经济开发区
一企业院加氢站内卸车柱上软管破裂导致氢气罐爆燃 无人伤亡
直接经济损失1475 万元2021年9月11日 湖南省永兴镇马田镇 个人私自利用液化石油气钢瓶制氢,
导致其制氢罐发生爆炸1人死亡,1人受伤
直接经济损失超93万元2022年4月24日 中国石化齐鲁石化胜利炼油厂 氢气泄漏着火 无人伤亡
直接经济损失180万元研究人员 研究对象 实验装置 抑爆剂 结论 刘原一等[21] H2/CO 2 m长不锈钢
管道N2、CO2 CO2对混合气爆燃特性的影响强于N2,主要表现在燃爆下限和压力波传播上 Yan等[22] H2/CO 球形爆炸室 N2、CO2 随着CO2和N2含量的增加,绝热火焰温度、热扩散系数和活性自由基摩尔分数不断降低,
使层流燃烧速度降低。其次,CO2抑制氢气爆炸压力比N2更有效Li等[23] H2 肥皂泡装置 He、Ar、
N2、CO2影响热扩散系数、绝热火焰温度、层流燃烧速度和热膨胀率的降低排序:He>Ar>N2>CO2,且N2不存在第三体效应,第三体效应:CO2>Ar>He,因此,CO2是缓解氢气爆炸较有效的添加物 Wei等[24] H2 定容燃烧弹 Ar、N2、CO2 不活泼气体的稀释减缓了火焰在燃烧室中的传播。抑制作用由小到大依次是Ar、N2、CO2 Wang等[25] H2 7.3 L圆筒
封闭容器Ar、N2、CO2 CO2比热高于N2和Ar,且CO2对能量损失的增加最显著,N2和Ar次之,
因此CO2的抑制效果优于Ar和N2邹颖等[26] H2 20L爆炸球 N2、CO2 CO2在爆炸压力及压力增长率方面的抑制效果优于N2 Wang等[27] H2/LPG 20L爆炸球 N2、CO2 比较了爆炸压力、自由基的摩尔分数和产生速率,得出CO2抑制作用优于N2。
其中N2主要起到了物理抑制作用,而CO2还发挥了化学抑制作用Chang等[28] H2 20 L标准球形
爆炸容器中N2、CO2 N2、CO2气体稀释的抑制作用可以平衡湍流的促进作用。在某些情况下,由于CO2的分子量较大,其对爆炸行为的增强作用比N2射流更明显 Wu等[29] H2 圆柱形停滞室 N2、CO2 从火焰长度减速比的比较可知,CO2与N2的减缓效果非常接近 Zhang等[30] H2 爆炸管道 N2、CO2 比较了爆炸压力、燃烧持续时间和火焰传播等爆炸参数,验证了CO2比N2抑制效果强。
此外,多层爆炸抑制对不同侧缓蚀剂的抑制效果最好当量比 绝热火焰温度/K He Ar N2 CO2 0.6 2764.9 2764.9 2222.5 1645.6 0.8 2988.8 2988.8 2566.2 1955.6 1.0 3090.1 3090.1 2760.8 2464.1 1.4 3069.8 3069.8 2705.8 2076.7 2.0 2853.0 2853.0 2478.2 1865.4 表 4 卤代烃与活化中心化学反应参数对比[77]
Table 4. Comparison of halogenated hydrocarbons and activation center chemical reaction parameters[77]
反应过程 活化能Ea/(kJ∙mol−1) 反应速率常数K/(cm³∙mol−1∙s−1) CHF3+OH·→CF3+H2O 19.10 2.71×10-16 CHClF2+OH·→CClF2+ H2O 12.72 4.60×10-15 CH2FCF3+OH·→CHFCF3+H2O 12.80 4.16×10-15 C2HF5+OH·→C2F5+H2O 13.80 1.90×10-15 -
[1] RICCI M, BELLABY P, FLYNN R. What do we know about public perceptions and acceptance of hydrogen ? : a critical review and new case study evidence [J]. International Journal of Hydrogen Energy, 2008, 33(21): 5868–5880. DOI: 10.1016/j.ijhydene.2008.07.106. [2] TANG C L, ZHANG Y J, HUANG Z H. Progress in combustion investigations of hydrogen enriched hydrocarbons [J]. Renewable and Sustainable Energy Reviews, 2014, 30: 195–216. DOI: 10.1016/j.rser.2013.10.005. [3] ACAR C, DINCER I. The potential role of hydrogen as a sustainable transportation fuel to combat global warming [J]. International Journal of Hydrogen Energy, 2020, 45(5): 3396–3406. DOI: 10.1016/j.ijhydene.2018.10.149. [4] SINGH S, JAIN S, PS V, et al. Hydrogen: A sustainable fuel for future of the transport sector [J]. Renewable and Sustainable Energy Reviews, 2015, 51: 623–633. DOI: 10.1016/j.rser.2015.06.040. [5] MAYRHOFER M, KOLLER M, SEEMANN P, et al. Assessment of natural gas/hydrogen blends as an alternative fuel for industrial heat treatment furnaces [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21672–21686. DOI: 10.1016/j.ijhydene.2021.03.228. [6] MORADI R, GROTH K M. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis [J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254–12269. DOI: 10.1016/j.ijhydene.2019.03.041. [7] 林言训, 秦家俊. 小型氮肥厂的爆炸事故及預防措施 [J]. 劳动, 1963(5): 32–33.LIN Y X, QIN J J. Explosion accidents and preventive measures in small nitrogen fertilizer plants [J]. Labor, 1963(5): 32–33. [8] 汪德山. 氢气燃爆现象种种 [J]. 甘肃消防, 1999(8): 17.Wang D S. Various hydrogen explosion phenomena [J]. Gansu Fire Protection, 1999(8): 17. [9] LAHNAOUI A, WULF C, HEINRICHS H, et al. Optimizing hydrogen transportation system for mobility via compressed hydrogen trucks [J]. International Journal of Hydrogen Energy, 2019, 44(35): 19302–19312. DOI: 10.1016/j.ijhydene.2018.10.234. [10] SAZALI N. Emerging technologies by hydrogen: a review [J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753–18771. DOI: 10.1016/j.ijhydene.2020.05.021. [11] AARSKOG F G, HANSEN O R, STRØMGREN T, et al. Concept risk assessment of a hydrogen driven high speed passenger ferry [J]. International Journal of Hydrogen Energy, 2020, 45(2): 1359–1372. DOI: 10.1016/j.ijhydene.2019.05.128. [12] 郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究 [D]. 重庆: 重庆大学, 2017.ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methane deflagration in ducts [D]. Chongqing: Chongqing University, 2017. [13] 高玉刚. 管道中可燃气体燃爆特性研究 [D]. 淮南: 安徽理工大学, 2011.GAO Y G. Study on burning explosion characteristics of flammable gas in tube [D]. Huainan: Anhui University of Science & Technology, 2011. [14] 孙占强, 余磊. 长输管道合于使用评价常见问题总结 [J]. 云南化工, 2023, 50(6): 163–165. DOI: 10.3969/j.issn.1004-275X.2023.06.44.SUN Z Q, YU L. Summary of common problems in the evaluation of suitability for use of long-distance pipelines [J]. Yunnan Chemical Technology, 2023, 50(6): 163–165. DOI: 10.3969/j.issn.1004-275X.2023.06.44. [15] CROWL D A, JO Y D. The hazards and risks of hydrogen [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(2): 158–164. DOI: 10.1016/j.jlp.2007.02.002. [16] NG H D, LEE J H S. Comments on explosion problems for hydrogen safety [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2): 136–146. DOI: 10.1016/j.jlp.2007.06.001. [17] 李一鸣. 七氟丙烷抑制甲烷-空气爆炸的实验研究 [D]. 大连: 大连理工大学, 2018.LI Y M. Experimental study of suppressing the methane/air explosion by heptafluoropropane [D]. Dalian: Dalian University of Technology, 2018. [18] SU Y, LUO Z M, WANG T, et al. Effect of nitrogen on deflagration characteristics of hydrogen/methane mixture [J]. International Journal of Hydrogen Energy, 2022, 47(15): 9156–9168. DOI: 10.1016/j.ijhydene.2022.01.013. [19] RAZUS D, MITU M, GIURCAN V, et al. Numerical study of pressure and composition influence on laminar flame propagation in nitrogen-diluted H2-O2 mixtures [J]. Revue Roumaine de Chimie, 2020, 65(6): 529–537. DOI: 10.33224/rrch.2020.65.6.02. [20] PARK J, KIM J S, CHUNG J O, et al. Chemical effects of added CO2 on the extinction characteristics of H2/CO/CO2 syngas diffusion flames [J]. International Journal of Hydrogen Energy, 2009, 34(20): 8756–8762. DOI: 10.1016/j.ijhydene.2009.08.046. [21] 刘原一, 朱轶铭, 熊英莹, 等. N2/CO2气氛对CO/H2爆燃特性的影响 [J]. 燃烧科学与技术, 2014, 20(5): 383–387. DOI: 10.11715/rskxjs.R201404011.LIU Y Y, ZHU Y M, XIONG Y Y, et al. Influence of N2/CO2 on deflagration characteristics of CO/H2 [J]. Journal of Combustion Science and Technology, 2014, 20(5): 383–387. DOI: 10.11715/rskxjs.R201404011. [22] YAN C C, BI M S, LI Y C, et al. Effects of nitrogen and carbon dioxide on hydrogen explosion behaviors near suppression limit [J]. Journal of Loss Prevention in the Process Industries, 2020, 67: 104228. DOI: 10.1016/j.jlp.2020.104228. [23] LI Y C, BI M S, HUANG L, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere [J]. Fuel Processing Technology, 2018, 180: 96–104. DOI: 10.1016/j.fuproc.2018.08.015. [24] WEI H Q, XU Z L, ZHOU L, et al. Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14798–14805. DOI: 10.1016/j.ijhydene.2018.06.038. [25] WANG L Q, MA H H, SHEN Z W. Explosion characteristics of hydrogen-air mixtures diluted with inert gases at sub-atmospheric pressures [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22527–22536. DOI: 10.1016/j.ijhydene.2019.01.059. [26] 邹颖, 董冰岩, 查裕学, 等. 密闭受限空间内N2、CO2对H2/Air混合气体的抑爆效果研究 [J]. 科技与创新, 2022(17): 87–92. DOI: 10.15913/j.cnki.kjycx.2022.17.028.ZOU Y, DONG B Y, ZHA Y X, et al. Study on the explosion suppression effect of N2 and CO2 on H2/air mixed gas in confined enclosed spaces [J]. Science and Innovation, 2022(17): 87–92. DOI: 10.15913/j.cnki.kjycx.2022.17.028. [27] WANG J Y, LIANG Y T, ZHAO Z Z. Effect of N2 and CO2 on explosion behavior of H2-liquefied petroleum gas-air mixtures in a confined space [J]. International Journal of Hydrogen Energy, 2022, 47(56): 23887–23897. DOI: 10.1016/j.ijhydene.2022.05.152. [28] CHANG X Y, BAI C H, ZHANG B. The effect of gas jets on the explosion dynamics of hydrogen-air mixtures [J]. Process Safety and Environmental Protection, 2022, 162: 384–394. DOI: 10.1016/j.psep.2022.04.032. [29] WU Y, YU X, WANG Z C, et al. The flame mitigation effect of N2 and CO2 on the hydrogen jet fire [J]. Process Safety and Environmental Protection, 2022, 165: 658–670. DOI: 10.1016/j.psep.2022.07.027. [30] ZHANG S Y, WEN X P, GUO Z D, et al. Experimental study on the multi-level suppression of N2 and CO2 on hydrogen-air explosion [J]. Process Safety and Environmental Protection, 2023, 169: 970–981. DOI: 10.1016/j.psep.2022.11.069. [31] 邹颖. 密闭空间内H2爆炸及CO2、N2抑爆过程的数值模拟及实验研究 [D]. 赣州: 江西理工大学, 2022. DOI: 10.27176/d.cnki.gnfyc.2022.000560.ZOU Y. Numerical simulation and experimental study of H2 explosion and SUPPR ESSION of CO2 and N2 explosion in confined space [D]. Ganzhou: Jiangxi University of Science and Technology, 2022. DOI: 10.27176/d.cnki.gnfyc.2022.000560. [32] TROPIN D. Numerical modeling of suppression of detonation waves in hydrogen-air mixture by system of inert particles clouds [J]. International Journal of Hydrogen Energy, 2022, 47(66): 28699–28709. DOI: 10.1016/j.ijhydene.2022.06.169. [33] 姜程山. 氢气的爆炸极限抑制研究 [D]. 济南: 山东建筑大学, 2017.JIANG C S. Inhibition of hydrogen's explosion limits [D]. Ji’nan: Shandong Jianzhu University, 2017. [34] 马文丽. 哈龙灭火剂替代产品的分类及特点研究 [J]. 忻州师范学院学报, 2008, 24(4): 132–134. DOI: 10.3969/j.issn.1671-1491.2008.04.047.MA W L. Study on classification and characteristics of Halon fire extinguishing agent substitute products [J]. Journal of Xinzhou Teachers University, 2008, 24(4): 132–134. DOI: 10.3969/j.issn.1671-1491.2008.04.047. [35] FAN R J, WANG Z R, GUO W J, et al. Experimental and theoretical study on the suppression effect of CF3CHFCF3 (FM-200) on hydrogen-air explosion [J]. International Journal of Hydrogen Energy, 2022, 47(26): 13191–13198. DOI: 10.1016/j.ijhydene.2022.02.062. [36] DRAKON A, EREMIN A, MATVEEVA N, et al. The opposite influences of flame suppressants on the ignition of combustible mixtures behind shock waves [J]. Combustion and Flame, 2017, 176: 592–598. DOI: 10.1016/j.combustflame.2016.11.001. [37] DRAKON A, EREMIN A. On relative effectiveness of halogenated hydrocarbons for suppression of hydrogen-oxygen mixture autoignition [J]. Combustion Science and Technology, 2018, 190(3): 550–555. DOI: 10.1080/00102202.2017.1402011. [38] GAO M D, BI M S, YE L L, et al. Suppression of hydrogen-air explosions by hydrofluorocarbons [J]. Process Safety and Environmental Protection, 2021, 145: 378–387. DOI: 10.1016/j.psep.2020.08.036. [39] SHANG S, BI M S, ZHANG K, et al. Suppression of hydrogen-air explosions by isobutene with special molecular structure [J]. International Journal of Hydrogen Energy, 2022, 47(61): 25864–25875. DOI: 10.1016/j.ijhydene.2022.06.012. [40] SHANG S, BI M S, ZHANG Z L, et al. Synergistic effects of isobutene and carbon dioxide on suppressing hydrogen-air explosions [J]. International Journal of Hydrogen Energy, 2022, 47(60): 25433–25442. DOI: 10.1016/j.ijhydene.2022.05.256. [41] 李卓然, 夏远辰, 张彬, 等. 细水雾对置障管内预混气体抑爆机理研究 [J]. 消防科学与技术, 2021, 40(6): 884–887. DOI: 10.3969/j.issn.1009-0029.2021.06.024.LI Z R, XIA Y C, ZHANG B, et al. Study on the suppression mechanism of water mist on the deflagration of premixed methane gas in a barrier tube [J]. Fire Science and Technology, 2021, 40(6): 884–887. DOI: 10.3969/j.issn.1009-0029.2021.06.024. [42] 汪剑辉, 刘飞, 薛一江. 可燃气云抑爆技术初探 [J]. 工程爆破, 2011, 17(2): 19–22. DOI: 10.3969/j.issn.1006-7051.2011.02.005.WANG J H, LIU F, XUE Y J. Preliminary discuss on explosion suppression technique of flammable gas cloud [J]. Engineering Blasting, 2011, 17(2): 19–22. DOI: 10.3969/j.issn.1006-7051.2011.02.005. [43] ZALOSH R G, BAJPAI S N. Effect of water fogs on the deliberate ignition of hydrogen. Final report: EPRI-NP-2637 [R]. Norwood: Factory Mutual Research Corp. , 1982. [44] LUANGDILOK W, BENNETT R B. Fog inerting effects on hydrogen combustion in a PWR ice condenser containment [J]. Journal of Heat Transfer, 1995, 117(2): 502–507. DOI: 10.1115/1.2822550. [45] BUTZ J R, FRENCH P. Application of fine water mists to hydrogen deflagrations [C]//Proceedings of the Halon Alternatives Technical Working Conference. Albuquerque, NM. 1993: 345-356. [46] JONES S J, AVERILL A F, INGRAM J M, et al. Mitigation of hydrogen-air explosions using fine water mist sprays [C]// Symposium on Hazards: Process Safety and Environmental Protection. Manchester, UK: IChemE Symposium Series No. 151, 2006: 1-10. [47] INGRAM J M, AVERILL A F, BATTERSBY P N, et al. Suppression of hydrogen–oxygen–nitrogen explosions by fine water mist: Part 1. Burning velocity [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19250–19257. DOI: 10.1016/j.ijhydene.2012.09.092. [48] MODAK A U, ABBUD-MADRID A, DELPLANQUE J P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen–, methane–, and propane–air flames [J]. Combustion and Flame, 2006, 144(1/2): 103–111. DOI: 10.1016/j.combustflame.2005.07.003. [49] XIA Y C, ZHANG B, ZHANG J N, et al. Experimental research on combined effect of obstacle and local spraying water fog on hydrogen/air premixed explosion [J]. International Journal of Hydrogen Energy, 2022, 47(94): 40099–40115. DOI: 10.1016/j.ijhydene.2022.09.152. [50] 胡耀元, 钟依均, 应桃开, 等. H2, CO, CH4多元爆炸性混合气体支链爆炸阻尼效应 [J]. 化学学报, 2004, 62(10): 956–962. DOI: 10.3321/j.issn:0567-7351.2004.10.006.HU Y Y, ZHONG Y J, YING T K, et al. Damping effect on the branch-chain explosion of polybasic explosive mixture gas containing H2, CO and CH4 [J]. Acta Chimica Sinica, 2004, 62(10): 956–962. DOI: 10.3321/j.issn:0567-7351.2004.10.006. [51] WEI S M, YU M G, PEI B, et al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3 [J]. Fuel, 2022, 328: 125235. DOI: 10.1016/j.fuel.2022.125235. [52] WANG Z R, XU H, LU Y W, et al. Experimental and theoretical study on the suppression effect of water mist containing dimethyl methylphosphonate (DMMP) on hydrogen jet flame [J]. Fuel, 2023, 331: 125813. DOI: 10.1016/j.fuel.2022.125813. [53] 夏煜, 程扬帆, 胡芳芳, 等. 典型固体抑爆剂对乙炔-空气的抑爆特性 [J]. 高压物理学报, 2022, 36(6): 065201. DOI: 10.11858/gywlxb.20220580.XIA Y, CHENG Y F, HU F F, et al. Inhibition characteristics of typical solid explosion suppressors on acetylene-air explosion [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 065201. DOI: 10.11858/gywlxb.20220580. [54] LUO Z M, SU Y, CHEN X K, et al. Effect of BC powder on hydrogen/methane/air premixed gas deflagration [J]. Fuel, 2019, 257: 116095. DOI: 10.1016/j.fuel.2019.116095. [55] 田莉. 受限空间内氢气/甲烷/空气混合物爆炸特性及抑爆研究 [D]. 杭州: 中国计量大学, 2019. DOI: 10.27819/d.cnki.gzgjl.2019.000072.TIAN L. Study on characteristics and suppression of hydrogen/methane/air mixture explosion in enclosed space [D]. Hangzhou: China Jiliang University, 2019. DOI: 10.27819/d.cnki.gzgjl.2019.000072. [56] TSAI Y T, FU T, ZHOU Q. Explosion characteristics and suppression of hybrid Mg/H2 mixtures [J]. International Journal of Hydrogen Energy, 2021, 46(78): 38934–38943. DOI: 10.1016/j.ijhydene.2021.09.145. [57] LI Y, CHEN X F, YUAN B H, et al. Synthesis of a novel prolonged action inhibitor with lotus leaf-like appearance and its suppression on methane/hydrogen/air explosion [J]. Fuel, 2022, 329: 125401. DOI: 10.1016/j.fuel.2022.125401. [58] LI Y, ZHAO Q, LIU L J, et al. Investigation on the flame and explosion suppression of hydrogen/air mixtures by porous copper foams in the pipe with large aspect ratio [J]. Journal of Loss Prevention in the Process Industries, 2022, 76: 104744. DOI: 10.1016/j.jlp.2022.104744. [59] BIVOL G Y, GOLOVASTOV S V. Suppression of hydrogen-air detonation using porous materials in the channels of different cross section [J]. International Journal of Hydrogen Energy, 2021, 46(24): 13471–13483. DOI: 10.1016/j.ijhydene.2021.01.052. [60] SONG X Z, ZUO X C, YANG Z K, et al. The explosion-suppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures [J]. International Journal of Hydrogen Energy, 2020, 45(56): 32686–32701. DOI: 10.1016/j.ijhydene.2020.08.197. [61] 段玉龙, 王硕, 贺森, 等. 多孔材料下气体爆炸转扩散燃烧的特性研究 [J]. 爆炸与冲击, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009.DUAN Y L, WANG S, HE S, et al. Characteristics of gas explosion to diffusion combustion under porous materials [J]. Explosion and Shock Waves, 2020, 40(9): 095401. DOI: 10.11883/bzycj-2020-0009. [62] HOLBORN P G, BATTERSBY P, INGRAM J M, et al. Estimating the effect of water fog and nitrogen dilution upon the burning velocity of hydrogen deflagrations from experimental test data [J]. International Journal of Hydrogen Energy, 2013, 38(16): 6882–6895. DOI: 10.1016/j.ijhydene.2013.03.063. [63] BATTERSBY P N, AVERILL A F, INGRAM J M, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist: part 2: mitigation of vented deflagrations [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19258–19267. DOI: 10.1016/j.ijhydene.2012.10.029. [64] 苏洋, 罗振敏, 王涛. CO2/海泡石抑爆剂对氢气/甲烷爆炸特性参数的影响 [J]. 化工进展, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044.SU Y, LUO Z M, WANG T. Effect of CO2/sepiolite explosion suppressant on hydrogen/methane deflagration characteristic parameters [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5731–5736. DOI: 10.16085/j.issn.1000-6613.2022-0044. [65] YANG Z K, ZHAO K, SONG X Z, et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture [J]. International Journal of Hydrogen Energy, 2021, 46(70): 34998–35013. DOI: 10.1016/j.ijhydene.2021.08.035. [66] 程方明, 南凡, 罗振敏, 等. 瓦斯抑爆材料及机理研究进展与发展趋势 [J]. 煤炭科学技术, 2021, 49(8): 114–124. DOI: 10.13199/j.cnki.cst.2021.08.015.CHENG F M, NAN F, LUO Z M, et al. Research progress and development trend of gas explosion suppression materials and mechanism [J]. Coal Science and Technology, 2021, 49(8): 114–124. DOI: 10.13199/j.cnki.cst.2021.08.015. [67] 陈硕, 路长, 苏振国, 等. 煤矿瓦斯爆炸发展规律及防治的综述及展望 [J]. 火灾科学, 2021, 30(2): 63–79. DOI: 10.3969/j.issn.1004-5309.2021.02.01.CHEN S, LU C, SU Z G, et al. Review on development and prevention of coal mine gas explosion [J]. Fire Safety Science, 2021, 30(2): 63–79. DOI: 10.3969/j.issn.1004-5309.2021.02.01. [68] MOORE P E. Suppressants for the control of industrial explosions [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 119–123. DOI: 10.1016/0950-4230(95)00045-3. [69] 王任伟. N2/CO2/Ar稀释气体对甲烷预混层流火焰速度影响的物理与化学效应研究 [D]. 武汉: 华中科技大学, 2021. DOI: 10.27157/d.cnki.ghzku.2021.002801.WANG R W. A thesis submitted in partial fulfillment of the requirements for the degree of master of engineering [D]. Wuhan: Huazhong University of Science and Technology, 2021. DOI: 10.27157/d.cnki.ghzku.2021.002801. [70] 左前明, 程卫民, 汤家轩. 粉体抑爆剂在煤矿应用研究的现状与展望 [J]. 煤炭技术, 2010, 29(11): 78–80.ZUO Q M, CHENG W M, TANG J X. Current status and prospects of application and research of powder coal mine explosion suppression agent [J]. Coal Technology, 2010, 29(11): 78–80. [71] 李艳超. 氢气火焰失稳传播与爆炸压力的耦合影响机制研究 [D]. 大连: 大连理工大学, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003558.LI Y C. Dynamic couplings of unstable hydrogen flame propagation and explosion pressure evolution [D]. Dalian: Dalian University of Technology, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003558. [72] SU B, LUO Z M, WANG T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture [J]. Journal of Hazardous Materials, 2021, 403: 123680. DOI: 10.1016/j.jhazmat.2020.123680. [73] 闫彩彩. 近抑爆极限氢气爆炸动力学行为研究 [D]. 大连: 大连理工大学, 2020. DOI: 10.26991/d.cnki.gdllu.2020.000377.YAN C C. Study on hydrogen explosion dynamics near explosion suppression limit [D]. Dalian: Dalian University of Technology, 2020. DOI: 10.26991/d.cnki.gdllu.2020.000377. [74] LI Y C, BI M S, ZHOU Y H, et al. Hydrogen cloud explosion suppression by micron-size water mist [J]. International Journal of Hydrogen Energy, 2022, 47(55): 23462–23470. DOI: 10.1016/j.ijhydene.2022.05.132. [75] 张天巍. 含钾盐添加剂细水雾的灭火有效性及机理研究 [D]. 北京: 北京理工大学, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000014.ZHANG T W. Fire-extinguishing performance and mechanism study on water mist with potassium additives [D]. Beijing: Beijing Institute of Technology, 2017. DOI: 10.26948/d.cnki.gbjlu.2017.000014. [76] 夏远辰, 张彬, 王博乔, 等. 超细水雾对氢气-甲烷预混气体爆燃抑制机理的实验研究 [J]. 大连海事大学学报, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015.XIA Y C, ZHANG B, WANG B Q, et al. Experimental research on suppression mechanism of ultrafine water mist on deflagration of hydrogen-methane premixed gas [J]. Journal of Dalian Maritime University, 2022, 48(4): 127–134. DOI: 10.16411/j.cnki.issn1006-7736.2022.04.015. [77] ATKINSON R, BAULCH D L, COX R A, et al. Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: supplement V. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry [J]. Journal of Physical and Chemical Reference Data, 1997, 26(3): 521–1011. DOI: 10.1063/1.556011. [78] WILLIAMS B A, L’ESPÉRANCE D M, FLEMING J W. Intermediate species profiles in low-pressure methane/oxygen flames inhibited by 2-H heptafluoropropane: comparison of experimental data with kinetic modeling [J]. Combustion and Flame, 2000, 120(1/2): 160–172. DOI: 10.1016/S0010-2180(99)00081-4. [79] XU W, JIANG Y, QIU R, et al. Influence of halon replacements on laminar flame speeds and extinction limits of hydrocarbon flames [J]. Combustion and Flame, 2017, 182: 1–13. DOI: 10.1016/j.combustflame.2017.03.029. [80] KATTA V R, TAKAHASHI F, LINTERIS G T. Fire-suppression characteristics of CF3H in a cup burner [J]. Combustion and Flame, 2006, 144(4): 645–661. DOI: 10.1016/j.combustflame.2005.09.006. [81] ZHANG X, YANG Z, HUANG X, et al. Combustion enhancement and inhibition of hydrogen-doped methane flame by HFC-227ea [J]. International Journal of Hydrogen Energy, 2021, 46(41): 21704–21714. DOI: 10.1016/j.ijhydene.2021.03.250. [82] PAGLIARO J L, LINTERIS G T, SUNDERLAND P B, et al. Combustion inhibition and enhancement of premixed methane–air flames by halon replacements [J]. Combustion and Flame, 2015, 162(1): 41–49. DOI: 10.1016/j.combustflame.2014.07.006. [83] 左前明, 程卫民, 邹冠贵, 等. 协同增效原理在煤尘抑爆剂中的应用实验 [J]. 重庆大学学报, 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582X.2012.01.020.ZUO Q M, CHENG W M, ZOU G G, et al. Applied experiments on coal dust inhibitor based on the theory of synergistic effect [J]. Journal of Chongqing University, 2012, 35(1): 105–109,116. DOI: 10.11835/j.issn.1000-582X.2012.01.020. [84] LI Y C, BI M S, YAN C C, et al. Inerting effect of carbon dioxide on confined hydrogen explosion [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22620–22631. DOI: 10.1016/j.ijhydene.2019.04.181. [85] LI J, HUANG H Y, KOBAYASHI N, et al. Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition [J]. Energy, 2017, 126: 796–809. DOI: 10.1016/j.energy.2017.03.085. [86] AZATYAN V V, SAIKOVA G R, BALAYAN G V, et al. Dependence of the flammability of hydrogen-air mixtures on the chemical and physical properties of admixtures [J]. Russian Journal of Physical Chemistry A, 2015, 89(3): 369–371. DOI: 10.1134/S0036024415030048. [87] 王志荣. 受限空间气体爆炸传播及其动力学过程研究 [D]. 南京: 南京工业大学, 2005.WANG Z R. Study on the dynamics of gas explosion process in confined space [D]. Nanjing: Nanjing Tech University, 2005. [88] CAO X Y, WANG Z R, LU Y W, et al. Numerical simulation of methane explosion suppression by ultrafine water mist in a confined space [J]. Tunnelling and Underground Space Technology, 2021, 109: 103777. DOI: 10.1016/j.tust.2020.103777. [89] DOUNIA O, VERMOREL O, POINSOT T. Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles [J]. Combustion and Flame, 2018, 193: 313–326. DOI: 10.1016/j.combustflame.2018.03.033. -