Dynamic deformation behavior and constitutive modeling of multi-component alloys at high temperature
-
摘要: 为加速多主元合金在航空工业领域的应用,将航空发动机经常面临的高温高应变率耦合环境作为实验条件,在5种温度下开展了CoCrFeNiMn多主元合金的动态压缩实验和变形后试样的塑性变形机理微观表征。结果表明:在1273 K的高温环境中,多主元合金的动态屈服强度可达200 MPa,表现出较好的耐高温性能;随着动态塑性应变的增加,材料内部出现了晶粒粗化的现象,并且在晶界处具有更高的亚结构孕育能力。此外,量化了不同环境温度下动态塑性变形过程中绝热温升的变化规律,指出了现有动态本构关系对CoCrFeNiMn多主元合金在宽温度域内动态应力-应变关系预测能力的不足。最后,通过解耦分析初始屈服与塑性流动阶段的温度效应,建立了一个指数形式的唯象动态本构方程。该本构方程可用于预测冲击载荷作用下宽温度域内多主元合金的屈服强度和塑性流动规律。Abstract: Compared to traditional alloys, the new multi-component alloy exhibits an excellent "cocktail effect". This effect allows for the collaborative control of structure and performance, making it highly suitable for application in the demanding service environment of the aviation industry. Experimental conditions simulating high temperature and high strain rate coupling environments encountered by aero engines are employed to expedite the adoption of multi-principal component alloys in the aviation industry. Using the CoCrFeNiMn multi-principal element alloy as the research object, dynamic impact tests were conducted at different temperatures (298, 673, 873, 1073, 1273 K) by using a split Hopkinson pressure bar with an impact velocity of 20 m/s. Dynamic stress-strain curves at five temperatures were obtained, and the results indicate that the stress-strain curve at 1273 K has higher strain-hardening ability compared to 873 K and 1073 K. When the temperature increases to 1273 K, the material's yield strength can still reach 200 MPa, demonstrating good high-temperature performance. The grain size, dislocation density, and microstructure types of the samples before and after deformation were discussed by electron backscatter diffraction tests. The experiment result reveals that an increase in dynamic plastic strain at 1273 K leads to a grain coarsening phenomenon, with higher substructure breeding ability observed at the grain boundary. In addition, the change in adiabatic temperature rise and ambient temperature during dynamic plastic deformation is quantified. It is also highlighted that the current dynamic constitutive relationship is inadequate in predicting the dynamic stress-strain relationship of the CoCrFeNiMn multi-principal component alloy across a wide temperature range. Finally, an exponentially phenomenological dynamic constitutive equation is established by decoupling the temperature effect between the initial yield and the plastic flow stage. This constitutive equation allows for accurate prediction of the yield strength and plastic flow behavior of multi-component alloys under impact loads over a wide temperature range.
-
表 1 模型参数
Table 1. Parameters of proposed model
$ {\sigma _{\text{t}}} $/MPa $ \beta $/K−1 a/MPa $ {\beta _{\text{1}}} $/K−1 b/MPa n $ {\sigma _{{\text{at}}}} $/MPa 733.16 1.23×10−3 226.01 1.36×10−3 204.90 0.69 115.42 -
[1] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375/376/377: 213–218. DOI: 10.1016/j.msea.2003.10.257. [2] GHOLIZADEH R, YOSHIDA S, BAI Y, et al. Global understanding of deformation behavior in CoCrFeMnNi high entropy alloy under high-strain torsion deformation at a wide range of elevated temperatures [J]. Acta Materialia, 2023, 243: 118514. DOI: 10.1016/j.actamat.2022.118514. [3] MOURAD A H I, ALMOMANI A, SHEIKH I A, et al. Failure analysis of gas and wind turbine blades: a review [J]. Engineering Failure Analysis, 2023, 146: 107107. DOI: 10.1016/j.engfailanal.2023.107107. [4] ESA M, XUE P, KASSEM M, et al. Manipulation of impact feedbacks by using novel mechanical-adaptor mechanism for UAV undercarriage applications [J]. Aerospace Science and Technology, 2017, 70: 233–243. DOI: 10.1016/j.ast.2017.07.021. [5] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展 [J]. 材料导报, 2022, 36(2): 179–183. DOI: 10.11896/cldb.20080242.PANG B L, WANG M, XI X L. Research development of mechanical properties and microstructure stability of cantor alloys [J]. Materials Reports, 2022, 36(2): 179–183. DOI: 10.11896/cldb.20080242. [6] WEI Q, ZHANG A J, HAN J S, et al. A novel Hf30Nb25Ta25Ti15Mo5 refractory high entropy alloy with excellent combination of strength and ductility [J]. Materials Science and Engineering: A, 2022, 857: 144035. DOI: 10.1016/j.msea.2022.144035. [7] 柳建, 郭煜, 蔡志海, 等. 轻质高熵合金在车辆装备中的应用前景 [J]. 特种铸造及有色合金, 2021, 41(7): 849–852. DOI: 10.15980/j.tzzz.2021.07.011.LIU J, GUO Y, CAI Z H, et al. Application prospect of lightweight high entropy alloy in vehicle equipment [J]. Special Casting & Nonferrous Alloys, 2021, 41(7): 849–852. DOI: 10.15980/j.tzzz.2021.07.011. [8] 陈海华, 张先锋, 刘闯, 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.CHEN H H, ZHANG X F, LIU C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explosion and Shock Waves, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414. [9] HU R, DU J H, ZHANG Y J, et al. Microstructure and corrosion properties of AlxCuFeNiCoCr (x=0.5, 1.0, 1.5, 2.0) high entropy alloys with Al content [J]. Journal of Alloys and Compounds, 2022, 921: 165455. DOI: 10.1016/j.jallcom.2022.165455. [10] 魏耀光, 郭刚, 李静, 等. 难熔高熵合金在航空发动机上的应用 [J]. 航空材料学报, 2019, 39(5): 82–93. DOI: 10.11868/j.issn.1005-5053.2019.000023.WEI Y G, GUO G, LI J, et al. Application of refractory high entropy alloys on aero-engines [J]. Journal of Aeronautical Materials, 2019, 39(5): 82–93. DOI: 10.11868/j.issn.1005-5053.2019.000023. [11] 王秒, 王微, 杨云龙, 等. 钎焊时间对CoFeNiCrCu高熵钎料钎焊SiC陶瓷接头组织与性能的影响 [J]. 航空学报, 2022, 43(4): 525057. DOI: 10.7527/S1000-6893.2021.25057.WANG M, WANG W, YANG Y L, et al. Effect of brazing time on microstructure and properties of SiC ceramic brazed with CoFeNiCrCu [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525057. DOI: 10.7527/S1000-6893.2021.25057. [12] 吕培森, 高强, 李常金, 等. 应力对DD5单晶高温合金持久过程中析出相的影响 [J]. 航空学报, 2021, 42(6): 424073. DOI: 10.7527/S1000-6893.2020.24073.LV P S, GAO Q, LI C J, et al. Effect of stress on precipitated phases in DD5 single crystal superalloy during stress rupture tests [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 424073. DOI: 10.7527/S1000-6893.2020.24073. [13] 王娟, 彭徽, 陈国忠, 等. Ru过渡层对NiCoCrAlY涂层与DD6单晶高温合金界面扩散行为的影响 [J]. 航空学报, 2011, 32(4): 758–764.WANG J, PENG H, CHEN G Z, et al. Impact of Ru buffer layer on diffusion behavior between NiCoCrAlY and single crystal superalloy DD6 [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 758–764. [14] REN K R, LIU H Y, MA R, et al. Dynamic compression behavior of TiZrNbV refractory high-entropy alloys upon ultrahigh strain rate loading [J]. Journal of Materials Science & Technology, 2023, 161: 201–219. DOI: 10.1016/j.jmst.2023.04.008. [15] 李娜, 李玉龙, 郭伟国. 两种钨合金材料力学行为及微观损伤研究 [J]. 兵器材料科学与工程, 2009, 32(4): 99–103. DOI: 10.3969/j.issn.1004-244X.2009.04.028.LI N, LI Y L, GUO W G. Study on the mechanical behaviors and microcosmic damage of two tungsten alloys [J]. Ordnance Material Science and Engineering, 2009, 32(4): 99–103. DOI: 10.3969/j.issn.1004-244X.2009.04.028. [16] JIANG K, ZHANG Q, LI J G, et al. Abnormal hardening and amorphization in an FCC high entropy alloy under extreme uniaxial tension [J]. International Journal of Plasticity, 2022, 159: 103463. DOI: 10.1016/j.ijplas.2022.103463. [17] 刘小川, 王彬文, 白春玉, 等. 航空结构冲击动力学技术的发展与展望 [J]. 航空科学技术, 2020, 31(3): 1–14. DOI: 10.19452/j.issn1007-5453.2020.03.001.LIU X C, WANG B W, BAI C Y, et al. Progress and prospect of aviation structure impact dynamics [J]. Aeronautical Science & Technology, 2020, 31(3): 1–14. DOI: 10.19452/j.issn1007-5453.2020.03.001. [18] 王永虎, 吴志坚, 杨敏. 无人机飞鸟撞击机翼损伤程度预测仿真 [J]. 计算机仿真, 2018, 35(9): 42–45, 83. DOI: 10.3969/j.issn.1006-9348.2018.09.009.WANG Y H, WU Z J, YANG M. The damage prediction and simulation for the UAV and birdstrike impact on wing [J]. Computer Simulation, 2018, 35(9): 42–45, 83. DOI: 10.3969/j.issn.1006-9348.2018.09.009. [19] LIU J, ZHANG C Y, JUAN B P, et al. Damage sensitivity of a wing-type leading edge structure impacted by a bird [J]. Chinese Journal of Aeronautics, 2023, 36(5): 328–343. DOI: 10.1016/j.cja.2023.03.018. [20] 陈跃良, 张柱柱, 卞贵学, 等. 高应变率条件下38CrMoAl钢的动态力学行为及失效模型 [J]. 航空学报, 2020, 41(10): 423709. DOI: 10.7527/S1000-6893.2020.23709.CHEN Y L, ZHANG Z Z, BIAN G X, et al. Dynamic mechanical behavior and failure model of 38CrMoAl steel under high strain rate [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 423709. DOI: 10.7527/S1000-6893.2020.23709. [21] FU Z X, GAO G F, WANG Y, et al. Research on dynamic mechanical properties and plastic constitutive relation of Ti3Al intermetallic compounds under mechanical-thermal coupling [J]. Journal of Materials Research and Technology, 2022, 19: 4154–4170. DOI: 10.1016/j.jmrt.2022.06.121. [22] 邱吉. 考虑强度准则与应变梯度的高熵合金压入理论 [D]. 太原: 太原理工大学, 2020: 98–101. DOI: 10.27352/d.cnki.gylgu.2020.000806.QIU J. Indentation theory of high entropy alloy based on strength criterion and strain gradient [D]. Taiyuan: Taiyuan University of Technology, 2020: 98–101. DOI: 10.27352/d.cnki.gylgu.2020.000806. [23] CHEN H Y, LIU Y, WANG Y G, et al. Temperature-dependent dynamic compressive properties and failure mechanisms of the additively manufactured CoCrFeMnNi high entropy alloy [J]. Materials & Design, 2022, 224: 111324. DOI: 10.1016/j.matdes.2022.111324. [24] KHAN M A, WANG T L, FENG C S, et al. A superb mechanical behavior of newly developed lightweight and ductile Al0.5Ti2Nb1Zr1Wx refractory high entropy alloy via nano-precipitates and dislocations induced-deformation [J]. Materials & Design, 2022, 222: 111034. DOI: 10.1016/j.matdes.2022.111034. [25] WANG H L, MA J, YUAN M N, et al. Microstructure, deformation behaviors and GND density evolution of Ti-Al laminated composites under the incremental compression test [J]. Materials Today Communications, 2022, 33: 104605. DOI: 10.1016/j.mtcomm.2022.104605. [26] SOARES G C, PATNAMSETTY M, PEURA P, et al. Effects of adiabatic heating and strain rate on the dynamic response of a CoCrFeMnNi high-entropy alloy [J]. Journal of Dynamic Behavior of Materials, 2019, 5(3): 320–330. DOI: 10.1007/s40870-019-00215-w. [27] WANG B F, FU A, HUANG X X, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression [J]. Journal of Materials Engineering and Performance, 2016, 25(7): 2985–2992. DOI: 10.1007/s11665-016-2105-5. [28] PARK J M, MOON J, BAE J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2018, 719: 155–163. DOI: 10.1016/j.msea.2018.02.031.