Calculation model for the blast wave load by explosion of air-moving cylindrical charges
-
摘要: 为预测战斗部的爆炸威力,对柱形装药运动爆炸的入射和反射冲击波峰值超压和最大冲量开展数值仿真研究。首先,基于AUTODYN有限元分析程序提出了“三阶段”装药运动爆炸有限元分析方法,通过与已有静止和运动爆炸试验结果对比,验证了方法的可靠性。然后,考虑装药运动速度、长径比、比例距离、方位角和刚性反射等影响因素,开展了运动爆炸工况下200组柱形装药的数值模拟。结果表明:相较于静爆,动爆冲击波场整体前移,波阵面强度在装药运动方向增强而在反方向减弱,该影响与装药运动速度正相关。最后,针对柱形装药空中自由场运动爆炸和垂直于目标迎爆面运动爆炸的典型工况,分别提出了装药运动爆炸入射和反射冲击波峰值超压以及最大冲量的计算模型。该模型与2种战斗部柱形TNT装药运动爆炸工况的数值模拟结果符合良好,能较好地计算柱形装药空中运动爆炸冲击波荷载。Abstract: Ammunition warheads are typically cylindrical charges that detonate at the moving stage. To accurately calculate the blast wave power field and the blast loadings acting on the structure of an air-moving cylindrical charge explosion, the peak overpressure and maximal impulse of the incident and reflected blast waves in the air-moving cylindrical charge explosion were numerically simulated. Firstly, a three-stage finite element analysis method for the explosion of air-moving cylindrical charges was proposed based on the AUTODYN finite element analysis program, and the reliability of the method was verified by comparing the simulated and test data of existing charges air static and moving explosion tests. Then, numerical simulations were conducted for 200 sets of scenarios of air-moving cylindrical charge explosions, considering factors such as charge-moving velocity, length-to-diameter ratio, scaled distance, azimuth angle, and rigid reflection. The distribution characteristics of the moving explosion blast wave field, and incident and reflected blast wave loadings were quantitatively analyzed. The results indicate that the blast wave field of a moving explosion is moved forward compared to the static explosion, and the wavefront strength is enhanced in the direction of charge movement and weakened in the opposite direction. This effect is positively correlated with the charge moving velocity, while the influence of changing the length-to-diameter ratio is small on the blast wave field. Furthermore, for the typical scenarios of air-moving cylindrical charge explosions in a free field and in a reflected field where the cylindrical charge was perpendicular to the target surface, calculation models for the peak overpressure and maximal impulse of the incident and reflected blast waves of the explosion of air-moving cylindrical charges were proposed. Finally, through carrying out numerical simulations of 40 sets of scenarios for the explosion of two simplified moving cylindrical TNT charges of prototype warheads, and comparing data of calculation models and simulations, the applicability of the proposed calculation model was validated. The results indicate that the calculation model is good at evaluating the blast wave loading of air-moving cylindrical charge explosion, which can also provide a certain reference for predicting the moving explosive power of warheads.
-
Key words:
- cylindrical charge /
- air moving explosion /
- peak overpressure /
- maximal impulse /
- calculation model
-
表 1 扰动压力场影响下入射冲击波峰值超压的相对误差
Table 1. Relative deviations of peak incident overpressure influenced by the disturbance pressure field
Ma Z/(m·kg−1/3) δd/% α=0° α=45° α=90° α=135° α=180° 1 0.3 2.88 0.76 0.97 0.18 9.08 0.4 0.40 0.19 0.03 0.41 6.46 0.5 2.63 0.71 0.42 0.35 2.94 4 0.3 16.41 0.93 7.67 1.40 29.46 0.4 7.75 1.10 4.57 5.15 14.64 0.5 3.66 2.63 2.71 8.14 5.78 表 2 峰值超压的拟合系数
Table 2. Coefficients of the fitted formula for peak overpressure
k A1,k,1 A1,k,2 A1,k,3 A2,k,1 A2,k,2 A2,k,3 A3,k,1 A3,k,2 A3,k,3 1 −2287 −60 1782 2769 250 −1686 −291 −40 182 2 −262 −74 484 −893 212 −205 491 −50 −51 3 −873 39 829 732 −160 −685 −152 50 102 4 −1781 89 1304 1854 −233 −932 −242 47 85 j Aj,1 Aj,2 Aj,3 Aj,4 Aj,5 1 −926 −308 721 −4 236 2 1497 858 −558 26 −559 3 −224 −133 111 −7 70 表 3 比冲量的拟合系数
Table 3. Coefficients of the fitted formula for the scaled impulse
k B1,k,1 B1,k2 B1,k,3 B2,k,1 B2,k,2 B2,k,3 B3,k,1 B3,k,2 B3,k,3 1 −74 31 47 28 −26 12 68 6 −40 2 928 7 −740 −1249 −2 743 521 1 −244 3 525 −1 −414 −676 −5 413 267 2 −129 4 74 −2 −49 −270 −8 167 179 3 −87 j Bj,1 Bj,2 Bj,3 Bj,4 Bj,5 1 372 214 −148 3 −181 2 −277 −72 108 −2 46 3 40 36 −10 0 −17 -
[1] US Department of Defense. UFC 3-340-02 Structures to resist the effects of accidental explosions, with change 2 [S]. Washington: US Department of Defense, 2014. [2] US Department of the Army. Fundamentals of protective design for conventional weapons: TM 5-855-1 [S]. Washington: US Department of the Army, 1986. [3] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722—2014 [S]. 北京: 中国标准出版社, 2015.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Safety regulations for blasting: GB 6722—2014 [S]. Beijing: Standards Press of China, 2015. [4] STONER R G, BLEAKNEY W. The attenuation of spherical shock waves in air [J]. Journal of Applied Physics, 1948, 19(7): 670–678. DOI: 10.1063/1.1698189. [5] BRODE H L. Numerical solutions of spherical blast waves [J]. Journal of Applied Physics, 1955, 26(6): 766–775. DOI: 10.1063/1.1722085. [6] BAKER W E. Explosions in air [M]. Austin: University of Texas Press, 1974: 6–10. [7] HENRYCH J. The dynamics of explosion and its use [M]. Amsterdam: Elsevier Science Publishing Company, 1979: 218. [8] MILLS C A. The design of concrete structures to resist explosions and weapon effects [C]//1st International Conference on Concrete for Hazard Protections. Edinburgh: European Cement Association, 1987: 11–15. [9] ANASTACIO A C, KNOCK C. Radial blast prediction for high explosive cylinders initiated at both ends [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(4): 682–687. DOI: 10.1002/prep.201500302. [10] KNOCK C, DAVIES N, REEVES T. Predicting blast waves from the axial direction of a cylindrical charge [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 169–179. DOI: 10.1002/prep.201300188. [11] KNOCK C, DAVIES N. Predicting the peak pressure from the curved surface of detonating cylindrical charges [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 203–209. DOI: 10.1002/prep.201000001. [12] KNOCK C, DAVIES N. Predicting the impulse from the curved surface of detonating cylindrical charges [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(2): 105–109. DOI: 10.1002/prep.201000002. [13] XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 04020146. DOI: 10.1061/(asce)st.1943-541x.0002694. [14] GAO C, KONG X Z, FANG Q, et al. Numerical investigation on free air blast loads generated from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation [J]. Defence Technology, 2022, 18(9): 1662–1678. DOI: 10.1016/j.dt.2021.07.013. [15] 王明涛, 程月华, 吴昊. 柱形装药空中爆炸冲击波荷载研究 [J]. 爆炸与冲击, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197.WANG M T, CHENG Y H, WU H. Study on blast loadings of cylindrical charges air explosion [J]. Explosion and Shock Waves, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197. [16] ARMENDT B F, SPERRAZZA J. Air blast measurements around moving explosive charges, Part Ⅲ: AD0114950 [R]. Aberdeen: Army Ballistics Research Laboratory, 1956. [17] PATTERSON J D, WENIG J. Air blast measurements around moving explosive charges: AD0033173 [R]. Aberdeen: Army Ballistics Research Laboratory, 1954. [18] ARMENDT B F, SPERRAZZA J. Air blast measurements around moving explosive charges, Part Ⅱ: AD0114950 [R]. Aberdeen: Army Ballistics Research Laboratory, 1955. [19] 蒋海燕, 李芝绒, 张玉磊, 等. 运动装药空中爆炸冲击波特性研究 [J]. 高压物理学报, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010.JIANG H Y, LI Z R, ZHANG Y L, et al. Characteristics of air blast wave field for explosive charge moving at different velocities [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010. [20] 陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究 [J]. 爆炸与冲击, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge [J]. Explosion and Shock Waves, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029. [21] 聂源, 蒋建伟, 李梅. 球形装药动态爆炸冲击波超压场计算模型 [J]. 爆炸与冲击, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06.NIE Y, JIANG J W, LI M. Overpressure calculation model of sphere charge blasting with moving velocity [J]. Explosion and Shock Waves, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06. [22] XU Q P, SU J J, LI Z R, et al. Air blast pressure characteristics of moving charge [J]. Journal of Physics: Conference Series, 2020, 1507: 032052. DOI: 10.1088/1742-6596/1507/3/032052. [23] 周至柔, 蒋海燕, 苏健军. 动爆冲击波场空间位置分布规律研究 [J]. 兵器装备工程学报, 2023, 44(2): 15–21. DOI: 10.11809/bqzbgcxb2023.02.003.ZHOU Z R, JIANG H Y, SU J J. Study on spatial position distribution of a dynamic detonation shock wave field [J]. Journal of Ordnance Equipment Engineering, 2023, 44(2): 15–21. DOI: 10.11809/bqzbgcxb2023.02.003. [24] MA X J, KONG D R, SHI Y C. Experimental and numerical investigation of blast loads induced by moving charge explosion [J]. Structures, 2023, 47: 2037–2049. DOI: 10.1016/j.istruc.2022.12.042. [25] CHEN H J, YIN J P, LI X D, et al. A numerical study on the blast wave distribution and propagation characteristics of cylindrical explosive in motion [J]. Mathematical Problems in Engineering, 2022, 2022: 6446164. DOI: 10.1155/2022/6446164. [26] 王振宁, 尹建平, 伊建亚, 等. 柱形装药近地动爆冲击波周向传播规律研究 [J]. 爆炸与冲击, 2023, 43(6): 063201. DOI: 10.11883/bzycj-2022-0313.WANG Z N, YIN J P, YI J Y, et al. A study on the circumferential propagation law of the shock waves produced by the near ground dynamic explosion of cylindrical charge [J]. Explosion and Shock Waves, 2023, 43(6): 063201. DOI: 10.11883/bzycj-2022-0313. [27] SIMOENS B, LEFEBVRE M H, MINAMI F. Influence of different parameters on the TNT-equivalent of an explosion [J]. Central European Journal of Energetic Materials, 2011, 8(1): 53–67. [28] SIMOENS B, LEFEBVRE M. Influence of the shape of an explosive charge: quantification of the modification of the pressure field [J]. Central European Journal of Energetic Materials, 2015, 12(2): 195–213. [29] 罗兴柏, 张玉令, 丁玉奎. 爆炸力学理论教程 [M]. 北京: 国防工业出版社, 2016: 132–139. 期刊类型引用(23)
1. 李启月,李丽,黄海仙,肖宇航,魏新傲. 基于概率论的高边坡爆破振动安全预测及控制研究. 中国安全生产科学技术. 2024(12): 12-18 . 百度学术
2. 张云鹏,葛晓东,武旭,王杰. 爆破地震波入射角度对振动和放大效应的影响. 工程爆破. 2023(01): 122-129 . 百度学术
3. 高庆,杨润基,卢许佳,谢东武. 降雨及爆破扰动下某露天矿山顺层高陡岩质边坡稳定性的影响及优化. 有色金属(矿山部分). 2023(04): 52-57 . 百度学术
4. 贺建强. 爆破振动对白马铁矿露天边坡稳定性影响研究. 工程建设. 2023(07): 24-30 . 百度学术
5. 姚作强,冯春,刘天苹. 爆炸载荷下顺层台阶边坡渐进破坏规律数值分析. 力学与实践. 2023(06): 1363-1374 . 百度学术
6. 胡斌,刘霁,李京,马利遥,丁静,汤琦. 降雨入渗对含缓倾软弱夹层矿山边坡的稳定性影响机制研究. 有色金属工程. 2022(03): 112-119 . 百度学术
7. 杨建华,代金豪,姚池,胡英国,张小波,周创兵. 爆破开挖扰动下锚固节理岩质边坡位移突变特征与能量机理. 爆炸与冲击. 2022(03): 138-149 . 本站查看
8. 宋娟,王晋,胡敏,贺龙喜. 爆破作用下含后缘裂隙岩质边坡的断裂力学分析. 工程爆破. 2022(06): 33-41 . 百度学术
9. 闫长斌,张彦昌,陈艳国,徐晓. 考虑爆破累积损伤效应的含泥化夹层边坡滑移分析. 水利水运工程学报. 2021(01): 104-113 . 百度学术
10. 胡风明,宋健,闫磊,曲振宇,赵甜甜. 危岩带下锚碇基坑施工技术及爆破振动监测. 中外公路. 2021(01): 173-177 . 百度学术
11. 柯秋壁,周小平. 四川巴中谭家山石灰岩露天矿边坡安全隐患及处置对策. 中国矿业. 2021(04): 201-205 . 百度学术
12. 梁瑞,包娟,周文海. 基于边坡稳定性的临界损伤质点峰值速度研究. 长江科学院院报. 2021(05): 82-87+102 . 百度学术
13. 吴新霞,饶宇,胡英国,柴朝政. 基于边坡稳定性的爆破振动控制标准确定方法. 工程爆破. 2021(02): 11-18 . 百度学术
14. 孙明武,丘小强,官旭晖,张豪,BEAUCLAI Raymond Zemfack,张衍昊. 基于不同判别条件爆破振动安全阈值的研究. 有色金属(矿山部分). 2021(03): 32-36 . 百度学术
15. 周后友,池恩安,欧阳天云,于海阔,高正华. 爆破荷载作用下露天边坡稳定性分析. 爆破. 2021(02): 80-87 . 百度学术
16. 何怡,郭力,马冲. 考虑软弱夹层中岩土体应变软化特性的矿山边坡变形体渐进破坏分析. 安全与环境工程. 2020(02): 162-167+174 . 百度学术
17. 古鹏翔,骆俊晖,刘先林,马冲. 考虑滑带土蠕变特性的边坡长期稳定性分析. 安全与环境工程. 2020(04): 94-101 . 百度学术
18. 张耿城,郭连军,贾建军,梁尔祝,董英健. 某露天铁矿爆破振动对边坡的动态响应特征研究. 中国矿业. 2020(12): 165-169 . 百度学术
19. 朱帅帅,唐海,万文,马谕杰,王建龙,丁安松. 爆破荷载下露天矿高边坡振动速度阈值的确定及控制. 矿业工程研究. 2020(04): 20-26 . 百度学术
20. 王智德,江俐敏,祝文化,夏元友. 顺层岩质边坡爆破荷载作用下的振动传播规律研究. 爆破. 2019(01): 55-62+83 . 百度学术
21. 李海港,李仕杰,吴贤振,杨泽元. 爆破振动对尾矿库稳定性影响分析研究. 世界有色金属. 2019(04): 1-4 . 百度学术
22. 郑明新,伍明文. 爆破振动下偏压隧道洞口段边坡稳定性分析. 铁道科学与工程学报. 2019(08): 2018-2027 . 百度学术
23. 黄小明. 安徽某露天矿山爆破降振技术措施. 现代矿业. 2018(09): 203-205 . 百度学术
其他类型引用(13)
-