覆土真空爆炸容器内部载荷及动态响应分析

周德政 李晓杰 王小红 王宇新 闫鸿浩

周德政, 李晓杰, 王小红, 王宇新, 闫鸿浩. 覆土真空爆炸容器内部载荷及动态响应分析[J]. 爆炸与冲击, 2024, 44(10): 101407. doi: 10.11883/bzycj-2023-0455
引用本文: 周德政, 李晓杰, 王小红, 王宇新, 闫鸿浩. 覆土真空爆炸容器内部载荷及动态响应分析[J]. 爆炸与冲击, 2024, 44(10): 101407. doi: 10.11883/bzycj-2023-0455
ZHOU Dezheng, LI Xiaojie, WANG Xiaohong, WANG Yuxin, YAN Honghao. Analysis of internal load and dynamic response of vacuum explosion containment vessel with sand covered for explosive welding[J]. Explosion And Shock Waves, 2024, 44(10): 101407. doi: 10.11883/bzycj-2023-0455
Citation: ZHOU Dezheng, LI Xiaojie, WANG Xiaohong, WANG Yuxin, YAN Honghao. Analysis of internal load and dynamic response of vacuum explosion containment vessel with sand covered for explosive welding[J]. Explosion And Shock Waves, 2024, 44(10): 101407. doi: 10.11883/bzycj-2023-0455

覆土真空爆炸容器内部载荷及动态响应分析

doi: 10.11883/bzycj-2023-0455
基金项目: 国家自然科学基金(12072067,12172084)
详细信息
    作者简介:

    周德政(1991- ),男,博士研究生,zhoudz19911108@163.com

    通讯作者:

    李晓杰(1963- ),男,博士,教授,robinli@dlut.edu.cn

  • 中图分类号: O382

Analysis of internal load and dynamic response of vacuum explosion containment vessel with sand covered for explosive welding

  • 摘要: 为了研制超大型真空爆炸焊接容器,探索覆土真空爆炸容器内的冲击载荷及结构动态响应,设计了一座可以满足实验需要的0.55 m3小型真空爆炸容器,在其内部开展了一系列真空爆炸实验;应用AUTODYN有限元应用程序,对真空爆炸实验进行了数值模拟分析,深入探索了冲击波在容器内部的传播规律、冲击载荷分布状态、结构动态响应以及覆土厚度对平板结构消振作用的影响等问题。实验和数值模拟结果表明:爆炸容器内冲击载荷时程曲线的第2次脉冲峰值明显高于第1次脉冲峰值,且冲击波的叠加和反射总是发生在封盖内壁;随着容器内部真空度的不断下降,冲击载荷的峰值也被明显削弱;容器封盖的动态响应分为阶跃上升、脉冲随动、惯性滞后和静压稳定4个发展阶段;随着真空度的下降以及覆土厚度的增加,爆炸容器的动态响应逐渐被削弱。降低容器内部环境压力和增加覆土厚度均可削减爆炸容器的受迫振动,可为超大型真空爆炸容器的结构设计提供参考。
  • 图  1  0.55 m3井式真空爆炸容器

    Figure  1.  0.55 m3 pit type vacuum explosion containment vessel

    图  2  真空爆炸实验测试系统和测点分布

    Figure  2.  Vacuum explosion test system and gauge points distribution

    图  3  爆炸冲击载荷 (ExpⅢ-100)

    Figure  3.  Explosion impact loads (ExpⅢ-100)

    图  4  空中爆炸的冲击载荷时程曲线[10]

    Figure  4.  Impact load time-history curve of air explosion[10]

    图  5  爆炸冲击载荷时程曲线的特征参量随真空度的变化[11]

    Figure  5.  Characteristic parameters of time-history curves of explosion impact load change with vacuum degree[11]

    图  6  实验真空爆炸容器的数值模型

    Figure  6.  Numerical model of experimental vacuum explosion vessel

    图  7  数值模拟和实验得到的爆炸冲击载荷时程曲线对比(ExpⅢ-100, 传感器A)

    Figure  7.  Comparison of explosive load time-history curves of impact load between numerical simulation and experiment (ExpⅢ-100, gauge A)

    图  8  数值模拟得到的爆炸容器内部压力场分布($ \tilde{p}\mathrm{_v} $=1.00)

    Figure  8.  Pressure field distribution obtained by numerical simulation inside the vacuum explosion containment vessel ($ \tilde{p}\mathrm{_v} $=1.00)

    图  9  不同真空度下的峰值超压分布

    Figure  9.  Distribution of peak overpressure under different vacuum degrees

    图  10  不同真空度下的比冲量分布

    Figure  10.  Distribution of specific impulse under different vacuum degrees

    图  11  实验流程及测点分布

    Figure  11.  Experimental process and gauge point distribution

    图  12  覆土作用下容器封盖的动态应变(传感器A1)

    Figure  12.  Dynamic strain on the cover of container under sand covering (Gauge A1)

    图  13  ExpⅧ*-000中不同测试点的动态应变

    Figure  13.  Dynamic strain at different gauge points in ExpⅧ*-000

    图  14  覆土厚度对动态应变的影响 (传感器A1)

    Figure  14.  Effect of soil covering thickness on dynamic strain (Gauge A1)

    图  15  真空度对动态响应的影响 (传感器A1)

    Figure  15.  Influence of vacuum degree on dynamic response (Gauge A1)

    图  16  炸药量对动态响应的影响 (传感器A1)

    Figure  16.  Influence of charge weight on dynamic response (Gauge A1)

    图  17  数值模型

    Figure  17.  Numerical model

    图  18  ExpⅧ*-450工况下数值模拟和实验得到的封盖动态应变 (传感器A1)

    Figure  18.  Dynamic strains of container cover calculated by numerical simulation and experiment under ExpⅧ*-450 (Gauge A1)

    图  19  ExpⅢ*-100工况下模拟的封盖应变时程曲线和压力时程曲线 (传感器A1)

    Figure  19.  Explosive load time-history curve and dynamic strain time-history curve calculated by numerical simulation under ExpⅢ*-100 (Gauge A1)

    图  20  数值模拟得到的爆炸容器内部压力场分布

    Figure  20.  Pressure field distribution of numerical simulation inside the vacuum explosion containment vessel

    表  1  实验分组及实验参数

    Table  1.   Experimental grouping and experimental parameters

    实验编号 铵油炸药量/g TNT当量/g $ \tilde{p}_{\mathrm{v}} $
    ExpⅢ-012 30 22.80 0.12
    ExpⅢ-050 30 22.80 0.50
    ExpⅢ-100 30 22.80 1.00
    ExpⅡ-100 20 15.20 1.00
    下载: 导出CSV

    表  2  覆土实验分组及实验参数

    Table  2.   Experimental grouping of soil covering and experimental parameters

    实验编号覆土厚度/mm实验编号覆土厚度/mm实验编号覆土厚度/mm
    ExpⅩ*-240240ExpⅧ*-450450ExpⅥ*-300300
    ExpⅩ*-180180ExpⅧ*-300300ExpⅥ*-150150
    ExpⅩ*-120120ExpⅧ*-150150ExpⅥ*-0000
    ExpⅩ*-06060ExpⅧ*-0000
    ExpⅩ*-0000ExpⅥ*-450450
    下载: 导出CSV

    表  3  真空爆炸实验分组及实验参数

    Table  3.   Experimental grouping and experimental parameters of vacuum explosion

    实验编号 黑索金炸药量/g TNT 当量/g $ \tilde{p}_{\mathrm{v}} $
    ExpⅢ*-100 30 45 1.00
    ExpⅢ*-075 30 45 0.75
    ExpⅢ*-050 30 45 0.50
    ExpⅢ*-020 30 45 0.20
    ExpⅡ*-020 20 30 0.20
    ExpⅣ*-020 40 60 0.20
    ExpⅤ*-020 50 75 0.20
    下载: 导出CSV

    表  4  封盖厚度为8 mm时不同测试点处实验和模拟的应变峰值

    Table  4.   Peak strains at different gauge points obtained by experiment and numerical simulation on the cover with a thickness of 8 mm

    实验编号 εmax(A1) εmax(B1)
    实验 模拟 误差/% 实验 模拟 误差/%
    ExpⅧ*-450 8.932×10−4 1.012×10−3 13.3 8.073×10−4 7.635×10−4 −5.4
    ExpⅧ*-300 1.085×10−3 1.234×10−3 13.7 9.312×10−4 9.583×10−4 2.9
    ExpⅧ*-150 1.239×10−3 1.431×10−3 15.5 1.041×10−3 1.039×10−3 −0.3
    ExpⅧ*-000 1.784×10−3 1.724×10−3 −3.3 1.323×10−3 1.223×10−3 −7.5
    实验编号 εmax(C1) εmax(D1)
    实验 模拟 误差/% 实验 模拟 误差/%
    ExpⅧ*-450 6.977×10−4 6.662×10−4 −5.1 −5.801×10−4 −5.557×10−4 9.4
    ExpⅧ*-300 8.336×10−4 8.939×10−4 7.2 −5.481×10−4 −5.908×10−4 7.8
    ExpⅧ*-150 9.232×10−4 1.013×10−3 −2.3 −7.205×10−4 −6.662×10−4 −7.5
    ExpⅧ*-000 1.196×10−3 1.167×10−3 −2.5 −6.313×10−4 −6.619×10−4 4.9
    下载: 导出CSV
  • [1] RINEHART J S, PEARSON J. Explosive working of metals [M]. New York: Pergamon Press, 1963.
    [2] ZENG X Y, LI X J, CHEN X, et al. Numerical and experimental studies on the explosive welding of plates with different initial strength [J]. Welding in the World, 2019, 63(4): 967–974. DOI: 10.1007/s40194-019-00733-0.
    [3] WANG Y X, LI X J, WANG X H, et al. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding [J]. Fusion Engineering and Design, 2018, 137: 91–96. DOI: 10.1016/j.fusengdes.2018.08.017.
    [4] 闫鸿浩, 李晓杰. 爆炸焊接技术应用扩展 [J]. 爆破, 2005, 22(1): 13–15, 24. DOI: 10.3963/j.issn.1001-487X.2005.01.003.

    YAN H H, LI X J. The extended application of explosive welding technology [J]. Blasting, 2005, 22(1): 13–15, 24. DOI: 10.3963/j.issn.1001-487X.2005.01.003.
    [5] 牛爱红. 金属复合材料真空爆炸焊接实践与研究 [J]. 工程爆破, 2018, 24(4): 67–70. DOI: 10.3969/j.issn.1006-7051.2018.04.013.

    NIU A H. Research and practice of vacuum explosion welding for metal cladding product [J]. Engineering Blasting, 2018, 24(4): 67–70. DOI: 10.3969/j.issn.1006-7051.2018.04.013.
    [6] 秦小勇. 大型爆炸焊接半球消波器研究 [D]. 大连: 大连理工大学, 2008.

    QIN X Y. The study on large scale hemispherical shock-waves trap structure for explosive welding [D]. Dalian: Dalian University of Technology, 2008.
    [7] 李晓杰, 秦小勇, 闫鸿浩. 半球阻波结构体底部的约束形式 [J]. 爆炸与冲击, 2010, 30(1): 7–11. DOI: 10.11883/1001-1455(2010)01-0007-05.

    LI X J, QIN X Y, YAN H H. Base constraint forms of hemispherical shock-waves trap structures [J]. Explosion and Shock Waves, 2010, 30(1): 7–11. DOI: 10.11883/1001-1455(2010)01-0007-05.
    [8] 程赛伟. 大型真空爆炸容器用组合结构椭球抗爆门研究 [D]. 大连: 大连理工大学, 2022.
    [9] ZHOU D Z, LI X J, WANG Y X, et al. Research on evolution of shock wave of ground explosion in pit type explosion containment vessel [J]. Structures, 2023, 50: 1164–1172. DOI: 10.1016/j.istruc.2023.02.082.
    [10] 李科斌, 李晓杰, 闫鸿浩, 等. 不同真空度下空中爆炸近场特性的数值模拟研究 [J]. 振动与冲击, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.

    LI K B, LI X J, YAN H H, et al. Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum [J]. Journal of Vibration and Shock, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.
    [11] ZHOU D Z, LI X J, WANG Y X, et al. Research on the influence of vacuum degree on the shock wave in pit type explosion containment vessel [J]. Structures, 2023, 56: 105033. DOI: 10.1016/j.istruc.2023.105033.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  39
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-09
  • 修回日期:  2024-05-27
  • 网络出版日期:  2024-05-28
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回